Solveeit Logo

Question

Question: From a circular disc of radius R and mass 9M, a small disc of radius R/3 is removed from the disc. T...

From a circular disc of radius R and mass 9M, a small disc of radius R/3 is removed from the disc. The moment of inertia of the remaining disc about an axis perpendicular to the plane of the disc and passing through O is:

A

4 MR2

B

40/9 MR2

C

10 MR2

D

37/9 MR2

Answer

4 MR2

Explanation

Solution

M.I. of complete disc about 'O' point

ITotal=½ (9M) R2 ...(i)

Radius of removed disc =R3= \frac { R } { 3 }

Mass of removed disc =9M9=M= \frac { 9 M } { 9 } = M

[As M = p R2 t MR2]

M.I. of removed disc about its own axis

=12M(R3)2=MR218= \frac { 1 } { 2 } M \left( \frac { R } { 3 } \right) ^ { 2 } = \frac { M R ^ { 2 } } { 18 }

Moment of inertia of removed disc about 'O'

Iremoved disc= =Icm+mx2= I _ { c m } + m x ^ { 2 } =MR218+M(2R3)2= \frac { M R ^ { 2 } } { 18 } + M \left( \frac { 2 R } { 3 } \right) ^ { 2 } =MR22= \frac { M R ^ { 2 } } { 2 }

M.I. of complete disc can also be written as

ITotal= IRemoved disc+ IRemaining disc

ITotal= MR22\frac { \mathrm { MR } ^ { 2 } } { 2 } + IRemaining disc ...(ii)

Equating (i) and (ii) we get

MR22\frac { \mathrm { MR } ^ { 2 } } { 2 } + IRemaining disc= 9MR22\frac { 9 \mathrm { MR } ^ { 2 } } { 2 }

IRemaining disc= 9MR22\frac { 9 \mathrm { MR } ^ { 2 } } { 2 }MR22\frac { \mathrm { MR } ^ { 2 } } { 2 } = 8MR22\frac { 8 \mathrm { MR } ^ { 2 } } { 2 } = 4 MR2