Solveeit Logo

Question

Mathematics Question on Sets

From 5050 students taking examinations in Mathematics, Physics and Chemistry, 3737 passed Mathematics, 2424 Physics and 4343 Chemistry. At most 1919 passed Mathematics and Physics, at most 2929 passed Mathematics and Chemistry and at most 2020 passed Physics and Chemistry. The largest possible number that could have passed all three examinations is

A

1111

B

1212

C

1313

D

1414

Answer

1414

Explanation

Solution

Let MM, PP and CC be the sets of students taking examinations in Mathematics, Physics and Chemistry respectively. n(MPC)=50\therefore n\left(M \cup P\cup C\right) = 50, n(M)=37n\left(M\right) = 37, n(P)=24n\left(P\right) = 24, n(C)=43n\left(C\right) = 43, n(MP)19n\left(M \cap P \right)\le 19, n(MC)29n \left(M \cap C\right)\le 29, n(PC)20n\left(P \cap C\right) \le20. We have n(MPC)=n(M)+n(P)+n(C)n(MP)n\left(M \cup P \cup C\right) = n\left(M\right) + n\left(P\right) + n\left(C\right) - n\left(M \cap P\right) n(MC)n(PC)+n(MPC)- n\left(M \cap C\right) - n\left(P \cap C\right) + n\left(M \cap P \cap C \right) 50=37+24+43n(MP)n(MC)\Rightarrow 50 = 37 + 24 + 43 - n\left(M \cap P\right) - n\left(M \cap C\right) - n(PC)+n(MPC)n\left(P \cap C\right) + n \left(M \cap P \cap C \right) n(MPC)=n(MP)+n(MC)+n(PC)54\Rightarrow n \left(M \cap P \cap C \right) = n\left(M \cap P\right) + n \left(M \cap C\right) + n \left(P \cap C \right)-54 n(MPC)19+29+2054=14\Rightarrow n\left(M \cap P \cap C\right) \le 19 + 29 + 20 - 54 = 14 n(MPC)14\Rightarrow n \left(M \cap P \cap C \right)\le 14.