Solveeit Logo

Question

Chemistry Question on Atomic Structure

Frequency of the de-Broglie wave of the electron in Bohr's first orbit of the hydrogen atom is ______ ×1013Hz\times 10^{13} \, \text{Hz} (nearest integer).
Given:RHR_H (Rydberg constant) = 2.18 \times 10^{-18} \, \text{J}$$h ((Planck's constant)= 6.6 \times 10^{-34}$$\text{J.s}

Answer

The de-Broglie wavelength λ\lambda is given by:
λ=hmv\lambda = \frac{h}{mv}
For an electron in motion:
Kinetic Energy (K.E.)=12mv2    v2=2K.E.m.\text{Kinetic Energy (K.E.)} = \frac{1}{2} mv^2 \implies v^2 = \frac{2 \cdot \text{K.E.}}{m}.
Step 1: Substituting values:
K.E.=RH=2.18×1018J.\text{K.E.} = R_H = 2.18 \times 10^{-18} \, \text{J}.
v=2RHm=22.18×10189.1×1031.v = \sqrt{\frac{2 \cdot R_H}{m}} = \sqrt{\frac{2 \cdot 2.18 \times 10^{-18}}{9.1 \times 10^{-31}}}.
Step 2: Using frequency relation:
ν=vλ=hmv.\nu = \frac{v}{\lambda} = \frac{h}{mv}.
Step 3: Substituting hh and solving for ν\nu:
ν=K.E.h=2.18×10186.6×1034.\nu = \frac{\text{K.E.}}{h} = \frac{2.18 \times 10^{-18}}{6.6 \times 10^{-34}}.
ν=660.6×1013Hz.\nu = 660.6 \times 10^{13} \, \text{Hz}.
Step 4: Nearest integer:
ν661×1013Hz\nu \approx 661 \times 10^{13} \, \text{Hz}

Explanation

Solution

The de-Broglie wavelength λ\lambda is given by:
λ=hmv\lambda = \frac{h}{mv}
For an electron in motion:
Kinetic Energy (K.E.)=12mv2    v2=2K.E.m.\text{Kinetic Energy (K.E.)} = \frac{1}{2} mv^2 \implies v^2 = \frac{2 \cdot \text{K.E.}}{m}.
Step 1: Substituting values:
K.E.=RH=2.18×1018J.\text{K.E.} = R_H = 2.18 \times 10^{-18} \, \text{J}.
v=2RHm=22.18×10189.1×1031.v = \sqrt{\frac{2 \cdot R_H}{m}} = \sqrt{\frac{2 \cdot 2.18 \times 10^{-18}}{9.1 \times 10^{-31}}}.
Step 2: Using frequency relation:
ν=vλ=hmv.\nu = \frac{v}{\lambda} = \frac{h}{mv}.
Step 3: Substituting hh and solving for ν\nu:
ν=K.E.h=2.18×10186.6×1034.\nu = \frac{\text{K.E.}}{h} = \frac{2.18 \times 10^{-18}}{6.6 \times 10^{-34}}.
ν=660.6×1013Hz.\nu = 660.6 \times 10^{13} \, \text{Hz}.
Step 4: Nearest integer:
ν661×1013Hz\nu \approx 661 \times 10^{13} \, \text{Hz}