Question
Chemistry Question on Atomic Structure
Frequency of the de-Broglie wave of the electron in Bohr's first orbit of the hydrogen atom is ______ ×1013Hz (nearest integer).
Given:RH (Rydberg constant) = 2.18 \times 10^{-18} \, \text{J}$$h (Planck's constant)= 6.6 \times 10^{-34}$$\text{J.s}
The de-Broglie wavelength λ is given by:
λ=mvh
For an electron in motion:
Kinetic Energy (K.E.)=21mv2⟹v2=m2⋅K.E..
Step 1: Substituting values:
K.E.=RH=2.18×10−18J.
v=m2⋅RH=9.1×10−312⋅2.18×10−18.
Step 2: Using frequency relation:
ν=λv=mvh.
Step 3: Substituting h and solving for ν:
ν=hK.E.=6.6×10−342.18×10−18.
ν=660.6×1013Hz.
Step 4: Nearest integer:
ν≈661×1013Hz
Solution
The de-Broglie wavelength λ is given by:
λ=mvh
For an electron in motion:
Kinetic Energy (K.E.)=21mv2⟹v2=m2⋅K.E..
Step 1: Substituting values:
K.E.=RH=2.18×10−18J.
v=m2⋅RH=9.1×10−312⋅2.18×10−18.
Step 2: Using frequency relation:
ν=λv=mvh.
Step 3: Substituting h and solving for ν:
ν=hK.E.=6.6×10−342.18×10−18.
ν=660.6×1013Hz.
Step 4: Nearest integer:
ν≈661×1013Hz