Solveeit Logo

Question

Question: \(\frac{(x^{3} + 8)(x - 1)}{x^{2} - 2x + 4}dx\) equals....

(x3+8)(x1)x22x+4dx\frac{(x^{3} + 8)(x - 1)}{x^{2} - 2x + 4}dx equals.

A

(x33)+(x22)2x+c\left( \frac{x^{3}}{3} \right) + \left( \frac{x^{2}}{2} \right) - 2x + c

B

x3+x22x+cx^{3} + x^{2} - 2x + c

C

(x3+x2x)3+c\frac{(x^{3} + x^{2} - x)}{3} + c

D

None of these

Answer

(x33)+(x22)2x+c\left( \frac{x^{3}}{3} \right) + \left( \frac{x^{2}}{2} \right) - 2x + c

Explanation

Solution

(x3+8)(x1)x22x+4dx\int_{}^{}\frac{(x^{3} + 8)(x - 1)}{x^{2} - 2x + 4}dx

=(x+2)(x22x+4)(x1)x22x+4= \int_{}^{}\frac{(x + 2)(x^{2} - 2x + 4)(x - 1)}{x^{2} - 2x + 4}

=(x+2)(x1)dx= \int_{}^{}{(x + 2)(x - 1)}dx =(x2+x2)dx= \int_{}^{}{(x^{2} + x - 2})dx =x33+x222x+c\frac{x^{3}}{3} + \frac{x^{2}}{2} - 2x + c