Solveeit Logo

Question

Question: $\frac{(x^2-4)^{30}(x^2-9)^9(x^2-3x+2)^{17}(3x^2+10)^{10}}{(x^2-5x+6)^{52}(x^2-25)^{60}(x^2+10)^{11}...

(x24)30(x29)9(x23x+2)17(3x2+10)10(x25x+6)52(x225)60(x2+10)110\frac{(x^2-4)^{30}(x^2-9)^9(x^2-3x+2)^{17}(3x^2+10)^{10}}{(x^2-5x+6)^{52}(x^2-25)^{60}(x^2+10)^{11}} \le 0

Answer

[-3, 1] ∪ (2, 3)

Explanation

Solution

The given inequality is (x24)30(x29)9(x23x+2)17(3x2+10)10(x25x+6)52(x225)60(x2+10)110\frac{(x^2-4)^{30}(x^2-9)^9(x^2-3x+2)^{17}(3x^2+10)^{10}}{(x^2-5x+6)^{52}(x^2-25)^{60}(x^2+10)^{11}} \le 0.

Factorize the expressions: x24=(x2)(x+2)x^2-4 = (x-2)(x+2) x29=(x3)(x+3)x^2-9 = (x-3)(x+3) x23x+2=(x1)(x2)x^2-3x+2 = (x-1)(x-2) x25x+6=(x2)(x3)x^2-5x+6 = (x-2)(x-3) x225=(x5)(x+5)x^2-25 = (x-5)(x+5) 3x2+10>03x^2+10 > 0 for all real xx. x2+10>0x^2+10 > 0 for all real xx.

Substitute the factors into the inequality: ((x2)(x+2))30((x3)(x+3))9((x1)(x2))17(3x2+10)10((x2)(x3))52((x5)(x+5))60(x2+10)110\frac{((x-2)(x+2))^{30}((x-3)(x+3))^9((x-1)(x-2))^{17}(3x^2+10)^{10}}{((x-2)(x-3))^{52}((x-5)(x+5))^{60}(x^2+10)^{11}} \le 0

Combine terms with the same base: (x2)30(x+2)30(x3)9(x+3)9(x1)17(x2)17(3x2+10)10(x2)52(x3)52(x5)60(x+5)60(x2+10)110\frac{(x-2)^{30}(x+2)^{30}(x-3)^9(x+3)^9(x-1)^{17}(x-2)^{17}(3x^2+10)^{10}}{(x-2)^{52}(x-3)^{52}(x-5)^{60}(x+5)^{60}(x^2+10)^{11}} \le 0 (x2)47(x+2)30(x3)9(x+3)9(x1)17(3x2+10)10(x2)52(x3)52(x5)60(x+5)60(x2+10)110\frac{(x-2)^{47}(x+2)^{30}(x-3)^9(x+3)^9(x-1)^{17}(3x^2+10)^{10}}{(x-2)^{52}(x-3)^{52}(x-5)^{60}(x+5)^{60}(x^2+10)^{11}} \le 0

Since (3x2+10)10>0(3x^2+10)^{10} > 0 and (x2+10)11>0(x^2+10)^{11} > 0 for all real xx, we can divide by these terms: (x2)47(x+2)30(x3)9(x+3)9(x1)17(x2)52(x3)52(x5)60(x+5)600\frac{(x-2)^{47}(x+2)^{30}(x-3)^9(x+3)^9(x-1)^{17}}{(x-2)^{52}(x-3)^{52}(x-5)^{60}(x+5)^{60}} \le 0

Simplify the terms with common bases in the numerator and denominator: 1(x2)51(x3)43(x+2)30(x+3)9(x1)171(x5)601(x+5)600\frac{1}{(x-2)^{5}} \frac{1}{(x-3)^{43}} (x+2)^{30}(x+3)^9(x-1)^{17} \frac{1}{(x-5)^{60}} \frac{1}{(x+5)^{60}} \le 0 (x+2)30(x+3)9(x1)17(x2)5(x3)43(x5)60(x+5)600\frac{(x+2)^{30}(x+3)^9(x-1)^{17}}{(x-2)^5(x-3)^{43}(x-5)^{60}(x+5)^{60}} \le 0

Let f(x)=(x+2)30(x+3)9(x1)17(x2)5(x3)43(x5)60(x+5)60f(x) = \frac{(x+2)^{30}(x+3)^9(x-1)^{17}}{(x-2)^5(x-3)^{43}(x-5)^{60}(x+5)^{60}}. The points where the denominator is zero must be excluded from the domain: x{2,3,5,5}x \in \{2, 3, 5, -5\}.

The terms with even powers are (x+2)30(x+2)^{30}, (x5)60(x-5)^{60}, and (x+5)60(x+5)^{60}. (x+2)300(x+2)^{30} \ge 0. It is zero at x=2x=-2. (x5)60>0(x-5)^{60} > 0 for x5x \neq 5. (x+5)60>0(x+5)^{60} > 0 for x5x \neq -5.

For x{5,2,5}x \notin \{-5, -2, 5\}, the sign of f(x)f(x) is the same as the sign of (x+3)9(x1)17(x2)5(x3)43\frac{(x+3)^9(x-1)^{17}}{(x-2)^5(x-3)^{43}}. Let g(x)=(x+3)9(x1)17(x2)5(x3)43g(x) = \frac{(x+3)^9(x-1)^{17}}{(x-2)^5(x-3)^{43}}. The critical points for g(x)g(x) are the roots of the numerator and denominator: x=3,1,2,3x=-3, 1, 2, 3. These points divide the number line into intervals: (,3),(3,1),(1,2),(2,3),(3,)(-\infty, -3), (-3, 1), (1, 2), (2, 3), (3, \infty). The powers of the factors in g(x)g(x) are all odd, so the sign of g(x)g(x) changes at each critical point. Let's test a value in (3,)(3, \infty), e.g., x=4x=4: g(4)=(4+3)9(41)17(42)5(43)43=(+)9(+)17(+)5(+)43=++=+g(4) = \frac{(4+3)^9(4-1)^{17}}{(4-2)^5(4-3)^{43}} = \frac{(+)^9(+)^{17}}{(+)^5(+)^{43}} = \frac{+}{+} = +. The sign of g(x)g(x) in the intervals is: (,3)(-\infty, -3): ++ (3,1)(-3, 1): - (1,2)(1, 2): ++ (2,3)(2, 3): - (3,)(3, \infty): ++

We want f(x)0f(x) \le 0. This occurs when g(x)<0g(x) < 0 or when f(x)=0f(x)=0.

Case 1: g(x)<0g(x) < 0. This happens for x(3,1)(2,3)x \in (-3, 1) \cup (2, 3). We must exclude the points where the original denominator is zero: x{2,3,5,5}x \in \{2, 3, 5, -5\}. The intervals (3,1)(-3, 1) and (2,3)(2, 3) do not contain 55 or 5-5. The points 22 and 33 are the endpoints of the intervals, and they are excluded from the intervals. So, x(3,1)(2,3)x \in (-3, 1) \cup (2, 3) is part of the solution.

Case 2: f(x)=0f(x) = 0. f(x)=0f(x) = 0 when the numerator is zero and the denominator is non-zero. Numerator of f(x)f(x) is (x+2)30(x+3)9(x1)17(x+2)^{30}(x+3)^9(x-1)^{17}. It is zero at x=2,x=3,x=1x=-2, x=-3, x=1. Denominator of f(x)f(x) is (x2)5(x3)43(x5)60(x+5)60(x-2)^5(x-3)^{43}(x-5)^{60}(x+5)^{60}. It is zero at x=2,3,5,5x=2, 3, 5, -5. The values where the numerator is zero but the denominator is non-zero are {2,3,1}\{-2, -3, 1\}. These points are solutions.

Combining the results from Case 1 and Case 2: The solution set is ((3,1)(2,3)){2,3,1}((-3, 1) \cup (2, 3)) \cup \{-2, -3, 1\}. Let's combine the intervals and points: (3,1){3,1}=[3,1](-3, 1) \cup \{-3, 1\} = [-3, 1]. So the solution is [3,1](2,3){2}[-3, 1] \cup (2, 3) \cup \{-2\}. Since 2-2 is in the interval [3,1][-3, 1], the union is simply [3,1](2,3)[-3, 1] \cup (2, 3).

We should double-check the excluded points from the original inequality denominator: x{2,3,5,5}x \in \{2, 3, 5, -5\}. Our solution set [3,1](2,3)[-3, 1] \cup (2, 3) does not include 2,3,5,52, 3, 5, -5. The point x=2x=-2 is included in [3,1][-3, 1]. Let's check the original inequality at x=2x=-2. Numerator at x=2x=-2: ((2)24)30()=(44)30()=0( (-2)^2-4)^{30}(\dots) = (4-4)^{30}(\dots) = 0. Denominator at x=2x=-2: ((2)25(2)+6)52((2)225)60((2)2+10)11=(4+10+6)52(425)60(4+10)11=(20)52(21)60(14)110((-2)^2-5(-2)+6)^{52}((-2)^2-25)^{60}((-2)^2+10)^{11} = (4+10+6)^{52}(4-25)^{60}(4+10)^{11} = (20)^{52}(-21)^{60}(14)^{11} \neq 0. So, at x=2x=-2, the inequality is 0non-zero0\frac{0}{\text{non-zero}} \le 0, which is 000 \le 0, which is true. So, x=2x=-2 is indeed a solution. It is included in the interval [3,1][-3, 1].

The final solution set is [3,1](2,3)[-3, 1] \cup (2, 3).