Solveeit Logo

Question

Question: \[\frac{x^{2} + 13x + 15}{(2x + 3)(x + 3)^{2}} =\]...

x2+13x+15(2x+3)(x+3)2=\frac{x^{2} + 13x + 15}{(2x + 3)(x + 3)^{2}} =

A

1x+312x+3+5(x+3)2\frac{1}{x + 3} - \frac{1}{2x + 3} + \frac{5}{(x + 3)^{2}}

B

12x+31x+3+5(x+3)2\frac{1}{2x + 3} - \frac{1}{x + 3} + \frac{5}{(x + 3)^{2}}

C

12x+3+1x+35(x+3)2\frac{1}{2x + 3} + \frac{1}{x + 3} - \frac{5}{(x + 3)^{2}}

D

12x+31x+35(x+3)2\frac{1}{2x + 3} - \frac{1}{x + 3} - \frac{5}{(x + 3)^{2}}

Answer

1x+312x+3+5(x+3)2\frac{1}{x + 3} - \frac{1}{2x + 3} + \frac{5}{(x + 3)^{2}}

Explanation

Solution

x2+13x+15(2x+3)(x+3)2=A2x+3+Bx+3+C(x+3)2\frac{x^{2} + 13x + 15}{(2x + 3)(x + 3)^{2}} = \frac{A}{2x + 3} + \frac{B}{x + 3} + \frac{C}{(x + 3)^{2}}

x2+13x+15=A(x+3)2+B(2x+3)(x+3)+C(2x+3)x^{2} + 13x + 15 = A(x + 3)^{2} + B(2x + 3)(x + 3) + C(2x + 3)

For x=3,C=5x = - 3,C = 5 and for x=32;A=1x = - \frac{3}{2};A = - 1

Equating coefficient of x2x^{2}

1=A+2BB=1A2=11 = A + 2B \Rightarrow B = \frac{1 - A}{2} = 1

\thereforeGiven expression = 1x+312x+3+5(x+3)2\frac{1}{x + 3} - \frac{1}{2x + 3} + \frac{5}{(x + 3)^{2}}.