Question
Question: \[\frac{x^{2} + 1}{(2x - 1)(x^{2} - 1)} =\]...
(2x−1)(x2−1)x2+1=
A
(a) \frac{- 5}{3(2x - 1)} + \frac{3}{(x + 1)} + \frac{1}{(x - 1)}
B
\frac{- 5}{3(2x - 1)} + \frac{1}{3(x + 1)} + \frac{1}{(x - 1)}
C
\frac{1}{2x - 1} + \frac{5}{(x + 1)} - \frac{3}{(x - 1)}
D
None of these
Answer
\frac{- 5}{3(2x - 1)} + \frac{1}{3(x + 1)} + \frac{1}{(x - 1)}
Explanation
Solution
(2x−1)(x2−1)x2+1=(2x−1)A+x+1B+x−1C
⇒ x2+1=A(x2−1)+B(2x−1)(x−1)+C(x+1)(2x−1)
For x=1, 2=2C⇒C=1
For x=−1, 2=6B⇒B=31
For x=21, 45=−43A⇒A=−35
∴ Given expression = −35(2x−1)1+31x+11+x−11