Solveeit Logo

Question

Question: \[\frac{x^{2} - y^{2}}{1!} + \frac{x^{4} - y^{4}}{2!} + \frac{x^{6} - y^{6}}{3!} + ......\infty =\]...

x2y21!+x4y42!+x6y63!+......=\frac{x^{2} - y^{2}}{1!} + \frac{x^{4} - y^{4}}{2!} + \frac{x^{6} - y^{6}}{3!} + ......\infty =

A

exeye^{x} - e^{y}

B

ex2ey2e^{x^{2}} - e^{y^{2}}

C

2+ex2ey22 + e^{x^{2}} - e^{y^{2}}

D

exey2\frac{e^{x} - e^{y}}{2}

Answer

ex2ey2e^{x^{2}} - e^{y^{2}}

Explanation

Solution

1212!+12+2223!+12+22+3234!+..+12+22+...+n2n(n+1)!+...\frac{1^{2}}{1 \cdot 2!} + \frac{1^{2} + 2^{2}}{2 \cdot 3!} + \frac{1^{2} + 2^{2} + 3^{2}}{3 \cdot 4!} + .. + \frac{1^{2} + 2^{2} + ... + n^{2}}{n \cdot (n + 1)!} + ...\infty.