Solveeit Logo

Question

Question: $\frac{(x-4)^{30}(x^2-9)(x^2-3x+2)^{17}}{(x^2-5x+6)^{52}(x^2-25)^{60}(x^2+10)^{11}} \le 0$...

(x4)30(x29)(x23x+2)17(x25x+6)52(x225)60(x2+10)110\frac{(x-4)^{30}(x^2-9)(x^2-3x+2)^{17}}{(x^2-5x+6)^{52}(x^2-25)^{60}(x^2+10)^{11}} \le 0

Answer

[-3, 1] ∪ (2, 3) ∪ {4}

Explanation

Solution

The given inequality is (x4)30(x29)(x23x+2)17(x25x+6)52(x225)60(x2+10)110\frac{(x-4)^{30}(x^2-9)(x^2-3x+2)^{17}}{(x^2-5x+6)^{52}(x^2-25)^{60}(x^2+10)^{11}} \le 0.

Factorize the polynomials:

x29=(x3)(x+3)x^2-9 = (x-3)(x+3)

x23x+2=(x1)(x2)x^2-3x+2 = (x-1)(x-2)

x25x+6=(x2)(x3)x^2-5x+6 = (x-2)(x-3)

x225=(x5)(x+5)x^2-25 = (x-5)(x+5)

x2+10x^2+10 is always positive for real xx.

Substitute the factors into the inequality:

(x4)30((x3)(x+3))((x1)(x2))17((x2)(x3))52((x5)(x+5))60(x2+10)110\frac{(x-4)^{30}((x-3)(x+3))((x-1)(x-2))^{17}}{((x-2)(x-3))^{52}((x-5)(x+5))^{60}(x^2+10)^{11}} \le 0

Combine terms with the same base:

(x4)30(x3)1(x+3)1(x1)17(x2)17(x2)52(x3)52(x5)60(x+5)60(x2+10)110\frac{(x-4)^{30}(x-3)^1(x+3)^1(x-1)^{17}(x-2)^{17}}{(x-2)^{52}(x-3)^{52}(x-5)^{60}(x+5)^{60}(x^2+10)^{11}} \le 0

Since (x2+10)11>0(x^2+10)^{11} > 0, we can ignore it for the sign analysis.

(x4)30(x3)(x+3)(x1)17(x2)17(x2)52(x3)52(x5)60(x+5)600\frac{(x-4)^{30}(x-3)(x+3)(x-1)^{17}(x-2)^{17}}{(x-2)^{52}(x-3)^{52}(x-5)^{60}(x+5)^{60}} \le 0

Simplify by canceling terms with common bases (subtracting exponents):

(x4)30(x+3)(x1)17(x2)5217(x3)521(x5)60(x+5)600\frac{(x-4)^{30}(x+3)(x-1)^{17}}{(x-2)^{52-17}(x-3)^{52-1}(x-5)^{60}(x+5)^{60}} \le 0

(x4)30(x+3)1(x1)17(x2)35(x3)51(x5)60(x+5)600\frac{(x-4)^{30}(x+3)^1(x-1)^{17}}{(x-2)^{35}(x-3)^{51}(x-5)^{60}(x+5)^{60}} \le 0

Let f(x)=(x4)30(x+3)1(x1)17(x2)35(x3)51(x5)60(x+5)60f(x) = \frac{(x-4)^{30}(x+3)^1(x-1)^{17}}{(x-2)^{35}(x-3)^{51}(x-5)^{60}(x+5)^{60}}.

The critical points are the values of xx where the numerator or denominator is zero: 5,3,1,2,3,4,5-5, -3, 1, 2, 3, 4, 5.

The points where the denominator is zero must be excluded from the solution: x2,3,5,5x \neq 2, 3, 5, -5.

We analyze the sign of f(x)f(x) using the wavy curve method based on the critical points and the powers of the factors:

Critical points in increasing order: 5,3,1,2,3,4,5-5, -3, 1, 2, 3, 4, 5.

Powers of the corresponding factors:

(x+5)60(x+5)^{60} (even power)

(x+3)1(x+3)^1 (odd power)

(x1)17(x-1)^{17} (odd power)

(x2)35(x-2)^{35} (odd power)

(x3)51(x-3)^{51} (odd power)

(x4)30(x-4)^{30} (even power)

(x5)60(x-5)^{60} (even power)

Let's determine the sign of f(x)f(x) in the interval (5,)(5, \infty). For x>5x > 5, all factors are positive, so f(x)>0f(x) > 0.

Now, we move from right to left across the critical points, changing the sign if the power of the corresponding factor is odd, and keeping the sign if the power is even.

  • At x=5x=5 (power 60, even): sign does not change. Interval (4,5)(4, 5): ++.

  • At x=4x=4 (power 30, even): sign does not change. Interval (3,4)(3, 4): ++.

  • At x=3x=3 (power 51, odd): sign changes. Interval (2,3)(2, 3): -.

  • At x=2x=2 (power 35, odd): sign changes. Interval (1,2)(1, 2): ++.

  • At x=1x=1 (power 17, odd): sign changes. Interval (3,1)(-3, 1): -.

  • At x=3x=-3 (power 1, odd): sign changes. Interval (5,3)(-5, -3): ++.

  • At x=5x=-5 (power 60, even): sign does not change. Interval (,5)(-\infty, -5): ++.

Summary of the sign of f(x)f(x):

f(x)>0f(x) > 0 for x(,5)(5,3)(1,2)(3,4)(4,5)(5,)x \in (-\infty, -5) \cup (-5, -3) \cup (1, 2) \cup (3, 4) \cup (4, 5) \cup (5, \infty).

f(x)<0f(x) < 0 for x(3,1)(2,3)x \in (-3, 1) \cup (2, 3).

We want f(x)0f(x) \le 0. This includes intervals where f(x)<0f(x) < 0 and points where f(x)=0f(x) = 0.

From the sign analysis, f(x)<0f(x) < 0 for x(3,1)(2,3)x \in (-3, 1) \cup (2, 3).

Now consider where f(x)=0f(x) = 0. This happens when the numerator is zero and the denominator is non-zero.

Numerator is (x4)30(x+3)(x1)17(x-4)^{30}(x+3)(x-1)^{17}. It is zero when x=4x=4, x=3x=-3, or x=1x=1.

Denominator is (x2)35(x3)51(x5)60(x+5)60(x-2)^{35}(x-3)^{51}(x-5)^{60}(x+5)^{60}. It is zero when x=2,3,5,5x=2, 3, 5, -5.

The values where the numerator is zero are {3,1,4}\{-3, 1, 4\}.

The values where the denominator is zero are {2,3,5,5}\{2, 3, 5, -5\}.

The values where f(x)=0f(x)=0 are the values from {3,1,4}\{-3, 1, 4\} that are not in {2,3,5,5}\{2, 3, 5, -5\}. These are {3,1,4}\{-3, 1, 4\}.

So, x=3,1,4x=-3, 1, 4 are solutions.

Combining the intervals where f(x)<0f(x) < 0 and the points where f(x)=0f(x) = 0:

Solution set = (3,1)(2,3){3,1,4}(-3, 1) \cup (2, 3) \cup \{-3, 1, 4\}.

This can be written as [3,1](2,3){4}[-3, 1] \cup (2, 3) \cup \{4\}.

The points where the original denominator is zero (x{2,3,5,5}x \in \{2, 3, 5, -5\}) are excluded from the solution, which is consistent with our solution set.

The final answer is [3,1](2,3){4}[-3, 1] \cup (2, 3) \cup \{4\}.