Solveeit Logo

Question

Question: $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x+3y-\alpha z + \beta = 0$, then...

x23=y15=z+22\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2} lies in the plane x+3yαz+β=0x+3y-\alpha z + \beta = 0, then value of αβ\alpha \beta is

A

42

B

1

C

-42

D

-2

Answer

-42

Explanation

Solution

Solution:

The line is given by

x23=y15=z+22.\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}.

Parametrize it by tt:

x=2+3t,y=15t,z=2+2t.x = 2 + 3t,\quad y = 1 - 5t,\quad z = -2 + 2t.

For the line to lie in the plane

x+3yαz+β=0,x+3y-\alpha z+\beta=0,

the following two conditions must hold:

  1. Direction vector condition:
    The direction vector of the line is d=(3,5,2)\mathbf{d} = (3,-5,2) and the normal to the plane is n=(1,3,α)\mathbf{n} = (1,3,-\alpha). Since the line lies in the plane,

    nd=013+3(5)+(α)2=0.\mathbf{n} \cdot \mathbf{d}=0 \quad \Rightarrow \quad 1\cdot3 + 3\cdot(-5) + (-\alpha)\cdot2 = 0.

    Simplify:

    3152α=0122α=0α=6.3 - 15 - 2\alpha = 0 \quad \Rightarrow \quad -12 - 2\alpha = 0 \quad \Rightarrow \quad \alpha = -6.
  2. Point condition:
    The line passes through the point (2,1,2)(2,1,-2) (when t=0t=0). Substitute into the plane:

    2+3(1)(6)(2)+β=0.2 + 3(1) - (-6)(-2) + \beta = 0.

    Calculate:

    2+312+β=07+β=0β=7.2 + 3 - 12 + \beta = 0 \quad \Rightarrow \quad -7 + \beta = 0 \quad \Rightarrow \quad \beta = 7.

The product is:

αβ=(6)(7)=42.\alpha\beta = (-6)(7) = -42.