Solveeit Logo

Question

Question: \[\frac{x + 1}{(x - 1)(x - 2)(x - 3)} =\]...

x+1(x1)(x2)(x3)=\frac{x + 1}{(x - 1)(x - 2)(x - 3)} =

A

1x1+3x2+1x3\frac{1}{x - 1} + \frac{3}{x - 2} + \frac{1}{x - 3}

B

3x1+1x2+2x3- \frac{3}{x - 1} + \frac{1}{x - 2} + \frac{2}{x - 3}

C

1x13x2+2x3\frac{1}{x - 1} - \frac{3}{x - 2} + \frac{2}{x - 3}

D

None of these

Answer

1x13x2+2x3\frac{1}{x - 1} - \frac{3}{x - 2} + \frac{2}{x - 3}

Explanation

Solution

x+1(x1)(x2)(x3)=Ax1+Bx2+Cx3\frac{x + 1}{(x - 1)(x - 2)(x - 3)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}

x+1=A(x2)(x3)+B(x1)(x3)+C(x1)(x2)\Rightarrow x + 1 = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 1)(x - 2)

Putting x=1,A=1x = 1,A = 1; x1+xlog(1+x)=111+xlog(1+x)\frac{x}{1 + x} - \log(1 + x) = 1 - \frac{1}{1 + x} - \log(1 + x) gives B=3B = - 3,

For x=3,C=2x = 3,C = 2

\thereforeGiven expression = 1x13x2+2x3\frac{1}{x - 1} - \frac{3}{x - 2} + \frac{2}{x - 3}.