Solveeit Logo

Question

Question: \[\frac{x - 1}{(x + 1)} + \frac{1}{2}.\frac{x^{2} - 1}{(x + 1)^{2}} + \frac{1}{3}.\frac{x^{3} - 1}{(...

x1(x+1)+12.x21(x+1)2+13.x31(x+1)3+......=\frac{x - 1}{(x + 1)} + \frac{1}{2}.\frac{x^{2} - 1}{(x + 1)^{2}} + \frac{1}{3}.\frac{x^{3} - 1}{(x + 1)^{3}} + ......\infty =

A

logex\log_{e}x

B

loge(1+x)\log_{e}(1 + x)

C

loge(1x)\log_{e}(1 - x)

D

logex1+x\log_{e}\frac{x}{1 + x}

Answer

logex\log_{e}x

Explanation

Solution

(1)n+1n[2n+1]\frac{( - 1)^{n + 1}}{n}\lbrack 2^{n} + 1\rbrack

2n+1n\frac{2^{n} + 1}{n}

=loge(1xx+1){loge(11x+1)}= - \log _ { e } \left( 1 - \frac { x } { x + 1 } \right) - \left\{ - \log _ { e } \left( 1 - \frac { 1 } { x + 1 } \right) \right\} x=11999lognx\sum_{x = 1}^{1999}{\log_{n}x}.

Trick : Put 19991999\sqrt[1999]{1999} and check