Solveeit Logo

Question

Question: \(\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} =\) (when x li...

1+sinx+1sinx1+sinx1sinx=\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = (when x lies in IInd quadrant)

A

sinx2\sin\frac{x}{2}

B

tanx2\tan\frac{x}{2}

C

secx2\sec\frac{x}{2}

D

cosecx2\text{cosec}\frac{x}{2}

Answer

tanx2\tan\frac{x}{2}

Explanation

Solution

1+sinx+1sinx1+sinx1sinx=cosx2+sinx2+sinx2cosx2cosx2+sinx2sinx2+cosx2\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{\cos\frac{x}{2} + \sin\frac{x}{2} + \sin\frac{x}{2} - \cos\frac{x}{2}}{\cos\frac{x}{2} + \sin\frac{x}{2} - \sin\frac{x}{2} + \cos\frac{x}{2}}

=tanx2= \tan\frac{x}{2}.