Solveeit Logo

Question

Question: If $\sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7$, then $\sin 2x = a - b \sqrt{7}; a, b \...

If sinx+cosx+tanx+cotx+secx+cscx=7\sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7, then sin2x=ab7;a,bN\sin 2x = a - b \sqrt{7}; a, b \in \mathbb{N}. The ordered pair (a,b)(a,b) can be equal to

A

(22,8)

B

(8,22)

C

(22,2)

D

(2,8)

Answer

(22,8)

Explanation

Solution

Let S=sinx+cosxS = \sin x + \cos x and P=sinxcosxP = \sin x \cos x. The given equation simplifies to S+1P+SP=7S + \frac{1}{P} + \frac{S}{P} = 7. This leads to P=S+1S7P = -\frac{S+1}{S-7}. We also know S2=1+2PS^2 = 1 + 2P, so P=S212P = \frac{S^2-1}{2}. Equating the expressions for PP gives S212=S+1S7\frac{S^2-1}{2} = -\frac{S+1}{S-7}. Since S1S \neq -1, we get S12=1S7\frac{S-1}{2} = -\frac{1}{S-7}, which simplifies to S28S+9=0S^2 - 8S + 9 = 0. The solutions for SS are 4±74 \pm \sqrt{7}. Since S=sinx+cosxS = \sin x + \cos x must be in the range [2,2][-\sqrt{2}, \sqrt{2}], the only valid solution is S=47S = 4 - \sqrt{7}. Then sin2x=2P=S21=(47)21=(1687+7)1=23871=2287\sin 2x = 2P = S^2 - 1 = (4 - \sqrt{7})^2 - 1 = (16 - 8\sqrt{7} + 7) - 1 = 23 - 8\sqrt{7} - 1 = 22 - 8\sqrt{7}. Comparing with sin2x=ab7\sin 2x = a - b\sqrt{7}, we find a=22a=22 and b=8b=8. Thus, (a,b)=(22,8)(a,b) = (22,8).