Solveeit Logo

Question

Question: \[\frac{\sin\theta + \sin 2\theta}{1 + \cos\theta + \cos 2\theta} =\]...

sinθ+sin2θ1+cosθ+cos2θ=\frac{\sin\theta + \sin 2\theta}{1 + \cos\theta + \cos 2\theta} =

A

12tanθ\frac{1}{2}\tan\theta

B

12cotθ\frac{1}{2}\cot\theta

C

tanθ\tan\theta

D

cotθ\cot\theta

Answer

tanθ\tan\theta

Explanation

Solution

sinθ+sin2θ1+cosθ+cos2θ\frac{\sin\theta + \sin 2\theta}{1 + \cos\theta + \cos 2\theta}

=sinθ+2sinθcosθ2cos2θ+cosθ=sinθ(1+2cosθ)cosθ(1+2cosθ)=tanθ= \frac{\sin\theta + 2\sin\theta\cos\theta}{2\cos^{2}\theta + \cos\theta} = \frac{\sin\theta(1 + 2\cos\theta)}{\cos\theta(1 + 2\cos\theta)} = \tan\theta.

Trick : Put θ=30\theta = 30{^\circ}, since for θ=30\theta = 30{^\circ}no option will give the common value.