Solveeit Logo

Question

Question: $\frac{sin3\theta-cos^3\theta}{sin\theta - cos\theta}-\frac{cos\theta}{\sqrt{1+cot^2\theta}}-2tan\th...

sin3θcos3θsinθcosθcosθ1+cot2θ2tanθcotθ=1\frac{sin3\theta-cos^3\theta}{sin\theta - cos\theta}-\frac{cos\theta}{\sqrt{1+cot^2\theta}}-2tan\theta cot\theta = -1

A

θ(0,π2)\theta \in (0,\frac{\pi}{2})

B

θ(π2,π)\theta \in (\frac{\pi}{2},\pi)

C

θ(π,3π2)\theta \in (\pi,\frac{3\pi}{2})

D

θ(3π2,2π)\theta \in (\frac{3\pi}{2},2\pi)

Answer

①, ③

Explanation

Solution

The given equation is: sin3θcos3θsinθcosθcosθ1+cot2θ2tanθcotθ=1\frac{\sin^3\theta-\cos^3\theta}{\sin\theta - \cos\theta}-\frac{\cos\theta}{\sqrt{1+\cot^2\theta}}-2\tan\theta \cot\theta = -1

Let's simplify each term:

Term 1: sin3θcos3θsinθcosθ\frac{\sin^3\theta-\cos^3\theta}{\sin\theta - \cos\theta} Using the identity a3b3=(ab)(a2+ab+b2)a^3-b^3 = (a-b)(a^2+ab+b^2), we get: (sinθcosθ)(sin2θ+sinθcosθ+cos2θ)sinθcosθ\frac{(\sin\theta - \cos\theta)(\sin^2\theta + \sin\theta\cos\theta + \cos^2\theta)}{\sin\theta - \cos\theta} Provided sinθcosθ0\sin\theta - \cos\theta \neq 0 (i.e., θnπ+π4\theta \neq n\pi + \frac{\pi}{4}), this simplifies to: sin2θ+cos2θ+sinθcosθ=1+sinθcosθ\sin^2\theta + \cos^2\theta + \sin\theta\cos\theta = 1 + \sin\theta\cos\theta

Term 2: cosθ1+cot2θ\frac{\cos\theta}{\sqrt{1+\cot^2\theta}} Using the identity 1+cot2θ=csc2θ1+\cot^2\theta = \csc^2\theta: cosθcsc2θ=cosθcscθ\frac{\cos\theta}{\sqrt{\csc^2\theta}} = \frac{\cos\theta}{|\csc\theta|} Since cscθ=1sinθ\csc\theta = \frac{1}{\sin\theta}, we have cscθ=1sinθ|\csc\theta| = \frac{1}{|\sin\theta|}. So, the term becomes cosθsinθ\cos\theta |\sin\theta|.

Term 3: 2tanθcotθ2\tan\theta \cot\theta Using the identity tanθcotθ=1\tan\theta \cot\theta = 1: 2tanθcotθ=2(1)=22 \tan\theta \cot\theta = 2(1) = 2 This is valid provided tanθ\tan\theta and cotθ\cot\theta are defined, which means sinθ0\sin\theta \neq 0 and cosθ0\cos\theta \neq 0. So θnπ2\theta \neq n\frac{\pi}{2}.

Now, substitute the simplified terms back into the equation: (1+sinθcosθ)cosθsinθ2=1(1 + \sin\theta\cos\theta) - \cos\theta |\sin\theta| - 2 = -1 sinθcosθcosθsinθ1=1\sin\theta\cos\theta - \cos\theta |\sin\theta| - 1 = -1 sinθcosθcosθsinθ=0\sin\theta\cos\theta - \cos\theta |\sin\theta| = 0 Factor out cosθ\cos\theta: cosθ(sinθsinθ)=0\cos\theta (\sin\theta - |\sin\theta|) = 0 This equation holds if either cosθ=0\cos\theta = 0 or sinθsinθ=0\sin\theta - |\sin\theta| = 0.

Case 1: cosθ=0\cos\theta = 0 This implies θ=(2n+1)π2\theta = (2n+1)\frac{\pi}{2} for integer nn. For θ(0,2π)\theta \in (0, 2\pi), possible values are θ=π2\theta = \frac{\pi}{2} and θ=3π2\theta = \frac{3\pi}{2}. However, the original expression is undefined when cosθ=0\cos\theta = 0 (because tanθ\tan\theta is undefined). Therefore, these values are not solutions.

Case 2: sinθsinθ=0\sin\theta - |\sin\theta| = 0 This implies sinθ=sinθ\sin\theta = |\sin\theta|. This condition is true if and only if sinθ0\sin\theta \ge 0. For θ(0,2π)\theta \in (0, 2\pi), sinθ0\sin\theta \ge 0 when θ(0,π]\theta \in (0, \pi].

Now, we must consider the domain restrictions for the original expression:

  1. sinθcosθ0    tanθ1    θnπ+π4\sin\theta - \cos\theta \neq 0 \implies \tan\theta \neq 1 \implies \theta \neq n\pi + \frac{\pi}{4}. For θ(0,2π)\theta \in (0, 2\pi), this means θπ4\theta \neq \frac{\pi}{4} and θ5π4\theta \neq \frac{5\pi}{4}.
  2. cotθ\cot\theta is defined     sinθ0    θnπ\implies \sin\theta \neq 0 \implies \theta \neq n\pi. For θ(0,2π)\theta \in (0, 2\pi), this means θπ\theta \neq \pi. (Note: θ0,2π\theta \neq 0, 2\pi are already excluded by the open interval).
  3. tanθ\tan\theta is defined     cosθ0    θ(2n+1)π2\implies \cos\theta \neq 0 \implies \theta \neq (2n+1)\frac{\pi}{2}. For θ(0,2π)\theta \in (0, 2\pi), this means θπ2\theta \neq \frac{\pi}{2} and θ3π2\theta \neq \frac{3\pi}{2}.

Combining the condition sinθ0\sin\theta \ge 0 (i.e., θ(0,π]\theta \in (0, \pi]) with the domain restrictions: We must exclude π4\frac{\pi}{4}, π2\frac{\pi}{2}, and π\pi from the interval (0,π](0, \pi]. So, the solution set for θ\theta is θ(0,π4)(π4,π2)(π2,π)\theta \in (0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi).

Let's check the given options: ① θ(0,π2)\theta \in (0,\frac{\pi}{2}): This interval is (0,π2)(0, \frac{\pi}{2}). The solution set within this interval is (0,π4)(π4,π2)(0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{2}). This option contains the values that are solutions, but also includes the excluded point π4\frac{\pi}{4}. However, if the question asks for an interval where the equation holds except for specific points, this is a common way to represent it.

θ(π2,π)\theta \in (\frac{\pi}{2},\pi): This interval is (π2,π)(\frac{\pi}{2}, \pi). All values in this interval satisfy sinθ>0\sin\theta > 0. The excluded points π4,5π4,π2,π,3π2\frac{\pi}{4}, \frac{5\pi}{4}, \frac{\pi}{2}, \pi, \frac{3\pi}{2} are not in this open interval. So, for all θ(π2,π)\theta \in (\frac{\pi}{2}, \pi), the equation holds.

θ(π,3π2)\theta \in (\pi,\frac{3\pi}{2}): In this interval, sinθ<0\sin\theta < 0. So sinθsinθ=sinθ(sinθ)=2sinθ\sin\theta - |\sin\theta| = \sin\theta - (-\sin\theta) = 2\sin\theta. The equation becomes cosθ(2sinθ)=0\cos\theta (2\sin\theta) = 0. This implies either cosθ=0\cos\theta = 0 or sinθ=0\sin\theta = 0. For θ(π,3π2)\theta \in (\pi, \frac{3\pi}{2}), cosθ<0\cos\theta < 0 and sinθ<0\sin\theta < 0, so neither is zero. Thus, no solutions in this interval.

θ(3π2,2π)\theta \in (\frac{3\pi}{2},2\pi): In this interval, sinθ<0\sin\theta < 0. Similar to option ②, the equation becomes 2sinθcosθ=02\sin\theta\cos\theta = 0, which has no solutions in this interval.

Therefore, the intervals where the equation holds are (0,π4)(π4,π2)(π2,π)(0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi). Both option ① and option ③ represent parts of this solution set. Option ① is (0,π2)(0, \frac{\pi}{2}), which contains the solutions (0,π4)(π4,π2)(0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{2}). Option ③ is (π2,π)(\frac{\pi}{2}, \pi), which contains the solutions (π2,π)(\frac{\pi}{2}, \pi).

Since the question asks to select the correct options, and both intervals are part of the solution set where the equation is true (excluding the points where the expression is undefined), both ① and ③ are correct.