Solveeit Logo

Question

Question: \[\frac{\sin^{2}A - \sin^{2}B}{\sin A\cos A - \sin B\cos B} =\]...

sin2Asin2BsinAcosAsinBcosB=\frac{\sin^{2}A - \sin^{2}B}{\sin A\cos A - \sin B\cos B} =

A

tan(AB)\tan(A - B)

B

tan(A+B)\tan(A + B)

C

cot(AB)\cot(A - B)

D

cot(A+B)\cot(A + B)

Answer

tan(A+B)\tan(A + B)

Explanation

Solution

sin2Asin2BsinAcosAsinBcosB=2sin(A+B)sin(AB)sin2Asin2B\frac{\sin^{2}A - \sin^{2}B}{\sin A\cos A - \sin B\cos B} = \frac{2\sin(A + B)\sin(A - B)}{\sin 2A - \sin 2B}

=2sin(A+B)sin(AB)2cos(A+B)sin(AB)=tan(A+B)= \frac{2\sin(A + B)\sin(A - B)}{2\cos(A + B)\sin(A - B)} = \tan(A + B).