Solveeit Logo

Question

Question: \(\frac{{\sin h}x - {\sin h}y}{{\cos h}x - {\cos h}y}\) is equal to...

sinhxsinhycoshxcoshy\frac{{\sin h}x - {\sin h}y}{{\cos h}x - {\cos h}y} is equal to

A

2coth(x+y)2\coth(x + y)

B

tanh(x+y2){\tan h}\left( \frac{x + y}{2} \right)

C

coth(x+y2)\coth\left( \frac{x + y}{2} \right)

D

coth(xy2)\cot h\left( \frac{x - y}{2} \right)

Answer

coth(x+y2)\coth\left( \frac{x + y}{2} \right)

Explanation

Solution

sinhxsinhycoshxcoshy=2coshx+y2sinhxy22sinhx+y2sinhxy2=coth(x+y2)\frac{{\sin h}x - {\sin h}y}{{\cos h}x - {\cos h}y} = \frac{2{\cos h}\frac{x + y}{2}{\sin h}\frac{x - y}{2}}{2{\sin h}\frac{x + y}{2}{\sin h}\frac{x - y}{2}} = {\cot h}\left( \frac{x + y}{2} \right)