Solveeit Logo

Question

Question: \[\frac{\sin 3A - \cos\left( \frac{\pi}{2} - A \right)}{\cos A + \cos(\pi + 3A)} =\]...

sin3Acos(π2A)cosA+cos(π+3A)=\frac{\sin 3A - \cos\left( \frac{\pi}{2} - A \right)}{\cos A + \cos(\pi + 3A)} =

A

tanA\tan A

B

cotA\cot A

C

tan2A\tan 2A

D

cot2A\cot 2A

Answer

cot2A\cot 2A

Explanation

Solution

sin3Acos(π2A)cosA+cos(π+3A)=sin3AsinAcosAcos3A\frac{\sin 3A - \cos\left( \frac{\pi}{2} - A \right)}{\cos A + \cos(\pi + 3A)} = \frac{\sin 3A - \sin A}{\cos A - \cos 3A}

=2cos2AsinA2sin2AsinA=cos2Asin2A=cot2A\frac{2\cos 2A\sin A}{2\sin 2A\sin A} = \frac{\cos 2A}{\sin 2A} = \cot 2A.