Solveeit Logo

Question

Question: \(\frac{\sin 2A + \sin 2B - \sin 2C}{\sin A + \sin B - \sin C}\) equal to...

sin2A+sin2Bsin2CsinA+sinBsinC\frac{\sin 2A + \sin 2B - \sin 2C}{\sin A + \sin B - \sin C} equal to

A

cosAcosBsinCsinA2sinB2cosC2\frac{\cos A\cos B\sin C}{\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}}

B

sinAsinBcosCcosA2cosB2sinC2\frac{\sin A\sin B\cos C}{\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}}

C

cosAcosBsinCsinA2sinB2cosC2- \frac{\cos A\cos B\sin C}{\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}}

D

sinAsinBcosCcosA2cosB2sinC2- \frac{\sin A\sin B\cos C}{\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}}

Answer

cosAcosBsinCsinA2sinB2cosC2\frac{\cos A\cos B\sin C}{\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}}

Explanation

Solution

(sin2A+sin2B)sin2C(sinA+sinB)sinC\frac{(\sin 2A + \sin 2B) - \sin 2C}{(\sin A + \sin B) - \sin C}=2sin(A+B)cos(AB)sin2C2sin(A+B2)cos(AB2)sinC\frac{2\sin(A + B)\cos(A - B) - \sin 2C}{2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) - \sin C}

=2sinCcos(AB)2sinCcosC2sin(πC2)cos(AB2)2sinC2cosC2\frac{2\sin C\cos(A - B) - 2\sin C\cos C}{2\sin\left( \frac{\pi - C}{2} \right)\cos\left( \frac{A - B}{2} \right) - 2\sin\frac{C}{2}\cos\frac{C}{2}}

=2sinC[cos(AB)cosC]2cosC2[cos(A2B2)cos(A2+B2)]\frac { 2 \sin C [ \cos ( A - B ) - \cos C ] } { 2 \cos \frac { C } { 2 } \left[ \cos \left( \frac { A } { 2 } - \frac { B } { 2 } \right) - \cos \left( \frac { A } { 2 } + \frac { B } { 2 } \right) \right] } [sinC=2sinC2cosC2sinC/2=sin(π2A+B2)=cos(A+B)2]\begin{bmatrix} \because\sin C = 2\sin\frac{C}{2}\cos\frac{C}{2} \\ \sin C/2 = \sin\left( \frac{\pi}{2} - \frac{A + B}{2} \right) = \cos\frac{(A + B)}{2} \end{bmatrix}

=2sinC[cos(AB)+cos(A+B)]2cosC2[cos(A2B2)cos(A2+B2)]\frac{2\sin C\lbrack\cos(A - B) + \cos(A + B)\rbrack}{2\cos\frac{C}{2}\left\lbrack \cos\left( \frac{A}{2} - \frac{B}{2} \right) - \cos\left( \frac{A}{2} + \frac{B}{2} \right) \right\rbrack}

=2sinC[2cosAcosB]2cosC2[2sinA2sinB2]\frac{2\sin C\lbrack 2\cos A\cos B\rbrack}{2\cos\frac{C}{2}\left\lbrack 2\sin\frac{A}{2}\sin\frac{B}{2} \right\rbrack} = cosAcosBsinCsinA2sinB2cosC2\frac{\cos A\cos B\sin C}{\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}}.

Trick : \mathbf{\because} sin2A+sin2Bsin2C=4cosAcosBsinC\sin 2A + \sin 2B - \sin 2C = 4\cos A\cos B\sin Cand

sinA+sinBsinC=4sinA2sinB2cosC2\sin A + \sin B - \sin C = 4\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}

sin2A+sin2Bsin2CsinA+sinBsinC=cosAcosBsinCsinA2sinB2cosC2\frac{\sin 2A + \sin 2B - \sin 2C}{\sin A + \sin B - \sin C} = \frac{\cos A\cos B\sin C}{\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}}.