Question
Question: \(\frac{\sin 2A + \sin 2B - \sin 2C}{\sin A + \sin B - \sin C}\) equal to...
sinA+sinB−sinCsin2A+sin2B−sin2C equal to
A
sin2Asin2Bcos2CcosAcosBsinC
B
cos2Acos2Bsin2CsinAsinBcosC
C
−sin2Asin2Bcos2CcosAcosBsinC
D
−cos2Acos2Bsin2CsinAsinBcosC
Answer
sin2Asin2Bcos2CcosAcosBsinC
Explanation
Solution
(sinA+sinB)−sinC(sin2A+sin2B)−sin2C=2sin(2A+B)cos(2A−B)−sinC2sin(A+B)cos(A−B)−sin2C
=2sin(2π−C)cos(2A−B)−2sin2Ccos2C2sinCcos(A−B)−2sinCcosC
=2cos2C[cos(2A−2B)−cos(2A+2B)]2sinC[cos(A−B)−cosC] [∵sinC=2sin2Ccos2CsinC/2=sin(2π−2A+B)=cos2(A+B)]
=2cos2C[cos(2A−2B)−cos(2A+2B)]2sinC[cos(A−B)+cos(A+B)]
=2cos2C[2sin2Asin2B]2sinC[2cosAcosB] = sin2Asin2Bcos2CcosAcosBsinC.
Trick : ∵ sin2A+sin2B−sin2C=4cosAcosBsinCand
sinA+sinB−sinC=4sin2Asin2Bcos2C
⇒ sinA+sinB−sinCsin2A+sin2B−sin2C=sin2Asin2Bcos2CcosAcosBsinC.