Solveeit Logo

Question

Question: \[\frac{\sec 8A - 1}{\sec 4A - 1} =\]...

sec8A1sec4A1=\frac{\sec 8A - 1}{\sec 4A - 1} =

A

tan2Atan8A\frac{\tan 2A}{\tan 8A}

B

tan8Atan2A\frac{\tan 8A}{\tan 2A}

C

cot8Acot2A\frac{\cot 8A}{\cot 2A}

D

None of these

Answer

tan8Atan2A\frac{\tan 8A}{\tan 2A}

Explanation

Solution

sec8A1sec4A1=1cos8Acos8A.cos4A1cos4A\frac{\sec 8A - 1}{\sec 4A - 1} = \frac{1 - \cos 8A}{\cos 8A}.\frac{\cos 4A}{1 - \cos 4A}

=2sin24Acos8Acos4A2sin22A=2sin4Acos4Acos8Asin4A2sin22A= \frac{2\sin^{2}4A}{\cos 8A}\frac{\cos 4A}{2\sin^{2}2A} = \frac{2\sin 4A\cos 4A}{\cos 8A}\frac{\sin 4A}{2\sin^{2}2A}

=tan8A2sin2Acos2A2sin22A=tan8Atan2A.= \tan 8A\frac{2\sin 2A\cos 2A}{2\sin^{2}2A} = \frac{\tan 8A}{\tan 2A}.