Solveeit Logo

Question

Question: $\frac{(n-1)(n-2)}{n^!+L-3n}$ $QS=(1.2)C_2+(1.3)C_3+...+(n-1) nC_n=?$...

(n1)(n2)n!+L3n\frac{(n-1)(n-2)}{n^!+L-3n}

QS=(1.2)C2+(1.3)C3+...+(n1)nCn=?QS=(1.2)C_2+(1.3)C_3+...+(n-1) nC_n=?

Answer

The sum S=(12)C2+(23)C3++((n1)n)CnS = (1 \cdot 2)C_2 + (2 \cdot 3)C_3 + \dots + ((n-1) \cdot n)C_n is equal to n(n1)2n2n(n-1)2^{n-2}.

Explanation

Solution

The problem asks us to find the sum of the series S=(12)C2+(23)C3++((n1)n)CnS = (1 \cdot 2)C_2 + (2 \cdot 3)C_3 + \dots + ((n-1) \cdot n)C_n, where CkC_k denotes the binomial coefficient (nk)\binom{n}{k}. The general term of the series can be written as Tk=(k1)kCk=(k1)k(nk)T_k = (k-1)k C_k = (k-1)k \binom{n}{k}. The sum starts from k=2k=2 and goes up to k=nk=n.

We use the identity for binomial coefficients: k(nk)=n(n1k1)k \binom{n}{k} = n \binom{n-1}{k-1}. Let's apply this identity to the general term TkT_k: Tk=(k1)(k(nk))T_k = (k-1) \left( k \binom{n}{k} \right) Tk=(k1)(n(n1k1))T_k = (k-1) \left( n \binom{n-1}{k-1} \right) Tk=n((k1)(n1k1))T_k = n \left( (k-1) \binom{n-1}{k-1} \right)

Now, we apply the identity again for the term (k1)(n1k1)(k-1) \binom{n-1}{k-1}. In this case, the 'n' in the identity becomes 'n-1' and the 'k' becomes 'k-1'. So, (k1)(n1k1)=(n1)((n1)1(k1)1)=(n1)(n2k2)(k-1) \binom{n-1}{k-1} = (n-1) \binom{(n-1)-1}{(k-1)-1} = (n-1) \binom{n-2}{k-2}.

Substitute this back into the expression for TkT_k: Tk=n(n1)(n2k2)T_k = n (n-1) \binom{n-2}{k-2}.

Now, we need to sum these terms from k=2k=2 to nn: S=k=2nTk=k=2nn(n1)(n2k2)S = \sum_{k=2}^{n} T_k = \sum_{k=2}^{n} n(n-1) \binom{n-2}{k-2}.

Since n(n1)n(n-1) is a constant with respect to kk, we can take it out of the summation: S=n(n1)k=2n(n2k2)S = n(n-1) \sum_{k=2}^{n} \binom{n-2}{k-2}.

Let j=k2j = k-2. When k=2k=2, j=0j=0. When k=nk=n, j=n2j=n-2. So the summation becomes: S=n(n1)j=0n2(n2j)S = n(n-1) \sum_{j=0}^{n-2} \binom{n-2}{j}.

We know the binomial theorem identity: r=0m(mr)=2m\sum_{r=0}^{m} \binom{m}{r} = 2^m. In our sum, m=n2m = n-2. Therefore, j=0n2(n2j)=2n2\sum_{j=0}^{n-2} \binom{n-2}{j} = 2^{n-2}.

Substituting this back into the expression for SS: S=n(n1)2n2S = n(n-1) 2^{n-2}.

The expression (n1)(n2)n!+L3n\frac{(n-1)(n-2)}{n^!+L-3n} shown in the image is not related to the sum SS and is disregarded.

The final answer is n(n1)2n2\boxed{n(n-1)2^{n-2}}.

Explanation of the solution:

  1. Identify the general term of the series as Tk=(k1)k(nk)T_k = (k-1)k \binom{n}{k}.
  2. Apply the identity k(nk)=n(n1k1)k \binom{n}{k} = n \binom{n-1}{k-1} twice to simplify TkT_k to n(n1)(n2k2)n(n-1) \binom{n-2}{k-2}.
  3. Rewrite the sum SS using the simplified general term: S=k=2nn(n1)(n2k2)S = \sum_{k=2}^{n} n(n-1) \binom{n-2}{k-2}.
  4. Factor out the constant term n(n1)n(n-1) from the summation.
  5. Change the index of summation from kk to j=k2j=k-2. This transforms the sum into j=0n2(n2j)\sum_{j=0}^{n-2} \binom{n-2}{j}.
  6. Recognize this as the sum of all binomial coefficients for exponent (n2)(n-2), which is equal to 2n22^{n-2} by the binomial theorem.
  7. Combine the results to get the final sum S=n(n1)2n2S = n(n-1)2^{n-2}.