Solveeit Logo

Question

Question: \[\frac{m - n}{m + n} + \frac{1}{3}\left( \frac{m - n}{m + n} \right)^{3} + \frac{1}{5}\left( \frac{...

mnm+n+13(mnm+n)3+15(mnm+n)5+......=\frac{m - n}{m + n} + \frac{1}{3}\left( \frac{m - n}{m + n} \right)^{3} + \frac{1}{5}\left( \frac{m - n}{m + n} \right)^{5} + ......\infty =

A

loge(mn)\log_{e}\left( \frac{m}{n} \right)

B

loge(nm)\log_{e}\left( \frac{n}{m} \right)

C

loge(mnm+n)\log_{e}\left( \frac{m - n}{m + n} \right)

D

12loge(mn)\frac{1}{2}\log_{e}\left( \frac{m}{n} \right)

Answer

12loge(mn)\frac{1}{2}\log_{e}\left( \frac{m}{n} \right)

Explanation

Solution

x=x =

= 1+ey3\frac{1 + e^{y}}{3}.