Question
Question: $\frac{\Huge\boxed{?}}{a^3}a^{(\log_{10}a^2)}=100$...
a3?a(log10a2)=100

Answer
100 * a^(3 - 2*log10(a))
Explanation
Solution
Let the value in the box be X. The given equation is:
a3Xa(log10a2)=100To find the value of X, we can rearrange the equation:
X=100×a(log10a2)a3Using the properties of exponents, bnbm=bm−n, we can write:
X=100×a3−(log10a2)Using the property of logarithms, logbcd=dlogbc, we have log10a2=2log10a. Substituting this into the expression for X:
X=100×a3−2log10aThis is the expression for the value in the box.