Solveeit Logo

Question

Question: $\frac{\Huge\boxed{?}}{a^3}a^{(\log_{10}a^2)}=100$...

?a3a(log10a2)=100\frac{\Huge\boxed{?}}{a^3}a^{(\log_{10}a^2)}=100

Answer

100 * a^(3 - 2*log10(a))

Explanation

Solution

Let the value in the box be XX. The given equation is:

Xa3a(log10a2)=100\frac{X}{a^3}a^{(\log_{10}a^2)}=100

To find the value of XX, we can rearrange the equation:

X=100×a3a(log10a2)X = 100 \times \frac{a^3}{a^{(\log_{10}a^2)}}

Using the properties of exponents, bmbn=bmn\frac{b^m}{b^n} = b^{m-n}, we can write:

X=100×a3(log10a2)X = 100 \times a^{3 - (\log_{10}a^2)}

Using the property of logarithms, logbcd=dlogbc\log_b c^d = d \log_b c, we have log10a2=2log10a\log_{10}a^2 = 2\log_{10}a. Substituting this into the expression for XX:

X=100×a32log10aX = 100 \times a^{3 - 2\log_{10}a}

This is the expression for the value in the box.