Solveeit Logo

Question

Question: $\frac{\Huge\boxed{?}}{a^3}a^{(\log_{10}a^2)}=100$...

?a3a(log10a2)=100\frac{\Huge\boxed{?}}{a^3}a^{(\log_{10}a^2)}=100

Answer

100a32log10a100 a^{3 - 2\log_{10}a}

Explanation

Solution

Let the expression in the box be XX. The given equation is: Xa3a(log10a2)=100\frac{X}{a^3}a^{(\log_{10}a^2)}=100 We need to solve for XX. First, let's simplify the term a(log10a2)a^{(\log_{10}a^2)}. Using the logarithm property logbxn=nlogbx\log_b x^n = n \log_b x, we have log10a2=2log10a\log_{10}a^2 = 2 \log_{10}a. So, the term becomes a(2log10a)a^{(2 \log_{10}a)}.

Now the equation is: Xa3a(2log10a)=100\frac{X}{a^3}a^{(2 \log_{10}a)}=100 We can rewrite a(2log10a)a^{(2 \log_{10}a)} as alog10(a2)a^{\log_{10}(a^2)}. Using the property xlogby=ylogbxx^{\log_b y} = y^{\log_b x}, we can swap the base and the argument of the logarithm. Let x=ax=a, y=a2y=a^2, and b=10b=10. alog10(a2)=(a2)log10aa^{\log_{10}(a^2)} = (a^2)^{\log_{10}a} So the equation becomes: Xa3(a2)log10a=100\frac{X}{a^3}(a^2)^{\log_{10}a}=100 Now, let's express aa in terms of base 10 using a=10log10aa = 10^{\log_{10}a}. Then a2=(10log10a)2=102log10aa^2 = (10^{\log_{10}a})^2 = 10^{2\log_{10}a}. Substitute this into the equation: X(10log10a)3(102log10a)log10a=100\frac{X}{(10^{\log_{10}a})^3} (10^{2\log_{10}a})^{\log_{10}a} = 100 X103log10a10(2log10a)(log10a)=102\frac{X}{10^{3\log_{10}a}} 10^{(2\log_{10}a)(\log_{10}a)} = 10^2 X103log10a102(log10a)2=102\frac{X}{10^{3\log_{10}a}} 10^{2(\log_{10}a)^2} = 10^2 Multiply both sides by 103log10a10^{3\log_{10}a}: X102(log10a)2=102103log10aX \cdot 10^{2(\log_{10}a)^2} = 10^2 \cdot 10^{3\log_{10}a} X=102103log10a102(log10a)2X = \frac{10^2 \cdot 10^{3\log_{10}a}}{10^{2(\log_{10}a)^2}} Using the property 10m10n=10m+n10^m \cdot 10^n = 10^{m+n} and 10m10n=10mn\frac{10^m}{10^n} = 10^{m-n}: X=102+3log10a2(log10a)2X = 10^{2 + 3\log_{10}a - 2(\log_{10}a)^2} This is the expression for XX. Let's try to simplify the exponent. Let m=log10am = \log_{10}a. The exponent is 2+3m2m22 + 3m - 2m^2. This does not seem to lead to a simple expression in terms of aa.

Let's go back to the form Xa3(a2)log10a=100\frac{X}{a^3}(a^2)^{\log_{10}a}=100. We want to isolate XX. X=100a3(a2)log10aX = 100 \cdot a^3 \cdot (a^2)^{-\log_{10}a} X=100a3(a)2log10aX = 100 \cdot a^3 \cdot (a)^{-2\log_{10}a} Using the property aman=am+na^m \cdot a^n = a^{m+n}: X=100a32log10aX = 100 \cdot a^{3 - 2\log_{10}a} This expression is the value in the box. Let's check if this simplifies the original equation when placed in the box. Substitute X=100a32log10aX = 100 \cdot a^{3 - 2\log_{10}a} into the left side of the original equation: 100a32log10aa3a(log10a2)\frac{100 \cdot a^{3 - 2\log_{10}a}}{a^3}a^{(\log_{10}a^2)} =100a32log10a3a(2log10a)= 100 \cdot a^{3 - 2\log_{10}a - 3} \cdot a^{(2\log_{10}a)} =100a2log10aa2log10a= 100 \cdot a^{-2\log_{10}a} \cdot a^{2\log_{10}a} =100a(2log10a)+(2log10a)= 100 \cdot a^{(-2\log_{10}a) + (2\log_{10}a)} =100a0= 100 \cdot a^0 =1001=100= 100 \cdot 1 = 100 This matches the right side of the equation. So the expression in the box is 100a32log10a100 \cdot a^{3 - 2\log_{10}a}.

We can rewrite a32log10aa^{3 - 2\log_{10}a} using the property amn=am/ana^{m-n} = a^m/a^n: a32log10a=a3a2log10a=a3(alog10a)2a^{3 - 2\log_{10}a} = a^3 \cdot a^{-2\log_{10}a} = a^3 \cdot (a^{\log_{10}a})^{-2}. Let m=log10am = \log_{10}a. Then a=10ma = 10^m. am=(10m)m=10m2a^m = (10^m)^m = 10^{m^2}. a2log10a=alog10a2a^{-2\log_{10}a} = a^{-\log_{10}a^2}. Using xlogby=ylogbxx^{\log_b y} = y^{\log_b x}: alog10a2=(a2)log10aa^{-\log_{10}a^2} = (a^2)^{-\log_{10}a}. Also, a2log10a=(a2)log10aa^{-2\log_{10}a} = (a^2)^{-\log_{10}a}. a2log10a=(10log10a)2log10a=102(log10a)2a^{-2\log_{10}a} = (10^{\log_{10}a})^{-2\log_{10}a} = 10^{-2(\log_{10}a)^2}.

So, X=100a3a2log10aX = 100 \cdot a^3 \cdot a^{-2\log_{10}a}. This form 100a32log10a100 a^{3 - 2\log_{10}a} is the simplified expression for the content of the box.