Question
Question: $\frac{\Huge\boxed{?}}{a^3}a^{(\log_{10}a^2)}=100$...
a3?a(log10a2)=100

100a3−2log10a
Solution
Let the expression in the box be X. The given equation is: a3Xa(log10a2)=100 We need to solve for X. First, let's simplify the term a(log10a2). Using the logarithm property logbxn=nlogbx, we have log10a2=2log10a. So, the term becomes a(2log10a).
Now the equation is: a3Xa(2log10a)=100 We can rewrite a(2log10a) as alog10(a2). Using the property xlogby=ylogbx, we can swap the base and the argument of the logarithm. Let x=a, y=a2, and b=10. alog10(a2)=(a2)log10a So the equation becomes: a3X(a2)log10a=100 Now, let's express a in terms of base 10 using a=10log10a. Then a2=(10log10a)2=102log10a. Substitute this into the equation: (10log10a)3X(102log10a)log10a=100 103log10aX10(2log10a)(log10a)=102 103log10aX102(log10a)2=102 Multiply both sides by 103log10a: X⋅102(log10a)2=102⋅103log10a X=102(log10a)2102⋅103log10a Using the property 10m⋅10n=10m+n and 10n10m=10m−n: X=102+3log10a−2(log10a)2 This is the expression for X. Let's try to simplify the exponent. Let m=log10a. The exponent is 2+3m−2m2. This does not seem to lead to a simple expression in terms of a.
Let's go back to the form a3X(a2)log10a=100. We want to isolate X. X=100⋅a3⋅(a2)−log10a X=100⋅a3⋅(a)−2log10a Using the property am⋅an=am+n: X=100⋅a3−2log10a This expression is the value in the box. Let's check if this simplifies the original equation when placed in the box. Substitute X=100⋅a3−2log10a into the left side of the original equation: a3100⋅a3−2log10aa(log10a2) =100⋅a3−2log10a−3⋅a(2log10a) =100⋅a−2log10a⋅a2log10a =100⋅a(−2log10a)+(2log10a) =100⋅a0 =100⋅1=100 This matches the right side of the equation. So the expression in the box is 100⋅a3−2log10a.
We can rewrite a3−2log10a using the property am−n=am/an: a3−2log10a=a3⋅a−2log10a=a3⋅(alog10a)−2. Let m=log10a. Then a=10m. am=(10m)m=10m2. a−2log10a=a−log10a2. Using xlogby=ylogbx: a−log10a2=(a2)−log10a. Also, a−2log10a=(a2)−log10a. a−2log10a=(10log10a)−2log10a=10−2(log10a)2.
So, X=100⋅a3⋅a−2log10a. This form 100a3−2log10a is the simplified expression for the content of the box.