Solveeit Logo

Question

Question: \[\frac{(fg)'}{fg} = \frac{fg' + gf'}{fg} = \frac{g'}{g} + \frac{f'}{f}\] \(\frac{(f/g)'}{f/g}\)=\(...

(fg)fg=fg+gffg=gg+ff\frac{(fg)'}{fg} = \frac{fg' + gf'}{fg} = \frac{g'}{g} + \frac{f'}{f}

(f/g)f/g\frac{(f/g)'}{f/g}=gffgg2f/g\frac{\frac{gf' - fg'}{g^{2}}}{f/g}= gffgfg\frac{gf' - fg'}{fg}= ff\frac{f'}{f}gg\frac{g'}{g}

A

f '(1/2) = f '(–1/2)

B

f '(x) = f '(–1/2)

C

f (–1/2) = f(1/2)

D

f (1/2) = f '(–1/2)

Answer

f (–1/2) = f(1/2)

Explanation

Solution

f(x) = 4x8 Ž f ¢(x) = 32x7

Here f(1/2) = f(–1/2) = 4(1/2)8