Solveeit Logo

Question

Question: \(\frac{E^{2}}{\mu_{0}}\)has the dimensions (E = electric field, µ<sub>0</sub> = permeability of fre...

E2μ0\frac{E^{2}}{\mu_{0}}has the dimensions (E = electric field, µ0 = permeability of free space) –

A

[M2L3T-2A2]\lbrack M^{2}L^{3}T^{\text{-2}}A^{2}\rbrack

B

[MLT-4]\lbrack\text{ML}\text{T}^{\text{-4}}\rbrack

C

[ML3T-2]\lbrack\text{M}\text{L}^{3}T^{\text{-2}}\rbrack

D

[M-1L2TA-2]\lbrack M^{\text{-1}}L^{2}\text{T}\text{A}^{\text{-2}}\rbrack

Answer

[MLT-4]\lbrack\text{ML}\text{T}^{\text{-4}}\rbrack

Explanation

Solution

[E2μ0]=[ε0E2ε0μ0]=[energy/volume(1/speedoflight)2]\left\lbrack \frac{E^{2}}{\mu_{0}} \right\rbrack = \left\lbrack \frac{\varepsilon_{0}E^{2}}{\varepsilon_{0}\mu_{0}} \right\rbrack = \left\lbrack \frac{energy/volume}{(1/speedoflight)^{2}} \right\rbrack

=[energy(speed)2volume]= \left\lbrack \frac{energy(speed)^{2}}{volume} \right\rbrack

=[ML2T2L2T2L3]= [MLT-4]= \left\lbrack \frac{ML^{2}T^{- 2}L^{2}T^{- 2}}{L^{3}} \right\rbrack = \ \lbrack\text{ML}\text{T}^{\text{-4}}\rbrack