Solveeit Logo

Question

Question: \(\frac{d}{dx}\left\lbrack \log\left\{ e^{x}\left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right...

ddx[log{ex(x2x+2)3/4}]\frac{d}{dx}\left\lbrack \log\left\{ e^{x}\left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right\rbrack equals to

A

11

B

x2+1x24\frac{x^{2} + 1}{x^{2} - 4}

C

x21x24\frac{x^{2} - 1}{x^{2} - 4}

D

exx21x24e^{x}\frac{x^{2} - 1}{x^{2} - 4}

Answer

x21x24\frac{x^{2} - 1}{x^{2} - 4}

Explanation

Solution

Lety=[log{ex(x2x+2)3/4}]=logex+log(x2x+2)3/4y = \left\lbrack \log\left\{ e^{x}\left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right\rbrack = \log e^{x} + {\log\left( \frac{x - 2}{x + 2} \right)}^{3/4}

y=x+34[log(x2)log(x+2)]y = x + \frac{3}{4}\lbrack\log(x - 2) - \log(x + 2)\rbrack

dydx=1+34[1x21x+2]=1+3(x24)\frac{dy}{dx} = 1 + \frac{3}{4}\left\lbrack \frac{1}{x - 2} - \frac{1}{x + 2} \right\rbrack = 1 + \frac{3}{(x^{2} - 4)}dydx=x21x24\frac{dy}{dx} = \frac{x^{2} - 1}{x^{2} - 4}.