Solveeit Logo

Question

Question: \[\frac{d}{dx}\left\lbrack \left( \frac{\tan^{2}2x - \tan^{2}x}{1 - \tan^{2}2x\tan^{2}x} \right)\cot...

ddx[(tan22xtan2x1tan22xtan2x)cot3x]\frac{d}{dx}\left\lbrack \left( \frac{\tan^{2}2x - \tan^{2}x}{1 - \tan^{2}2x\tan^{2}x} \right)\cot 3x \right\rbrack

A

tan2xtanx\tan 2x\tan x

B

tan3xtanx\tan 3x\tan x

C

sec2x\sec^{2}x

D

secxtanx\sec x\tan x

Answer

sec2x\sec^{2}x

Explanation

Solution

Let y=tan22xtan2x1tan22xtan2xy = \frac{\tan^{2}2x - \tan^{2}x}{1 - \tan^{2}2x\tan^{2}x} = (tan2xtanx)(1+tan2xtanx)(tan2x+tanx)(1tan2xtanx)\frac{(\tan 2x - \tan x)}{(1 + \tan 2x\tan x)}\frac{(\tan 2x + \tan x)}{(1 - \tan 2x\tan x)}

=tan(2xx)tan(2x+x)\tan(2x - x)\tan(2x + x) = tanxtan3x\tan x\tan 3x.

ddx[y.cot3x]=ddx[tanx]=sec2x\frac{d}{dx}\lbrack y.\cot 3x\rbrack = \frac{d}{dx}\lbrack\tan x\rbrack = \sec^{2}x.