Solveeit Logo

Question

Question: $\frac{d}{dt}(\frac{at+b}{x})=?$...

ddt(at+bx)=?\frac{d}{dt}(\frac{at+b}{x})=?

Answer

\frac{a}{x}

Explanation

Solution

The derivative is taken with respect to tt. The expression is at+bx\frac{at+b}{x}. Assume a,b,a, b, and xx are constants with respect to tt.

ddt(at+bx)=1xddt(at+b)\frac{d}{dt}\left(\frac{at+b}{x}\right) = \frac{1}{x} \frac{d}{dt}(at+b)

ddt(at+b)=ddt(at)+ddt(b)=a1+0=a\frac{d}{dt}(at+b) = \frac{d}{dt}(at) + \frac{d}{dt}(b) = a \cdot 1 + 0 = a

So, ddt(at+bx)=1xa=ax\frac{d}{dt}\left(\frac{at+b}{x}\right) = \frac{1}{x} \cdot a = \frac{a}{x}.