Solveeit Logo

Question

Question: $\frac{cos6\theta + 6cos4\theta + 15cos2\theta + 10}{cos5\theta + 5cos3\theta + 10cos\theta} = \lamb...

cos6θ+6cos4θ+15cos2θ+10cos5θ+5cos3θ+10cosθ=λcosθ\frac{cos6\theta + 6cos4\theta + 15cos2\theta + 10}{cos5\theta + 5cos3\theta + 10cos\theta} = \lambda cos\theta

λ=?\lambda = ?

Answer

2

Explanation

Solution

To solve the given problem, we need to simplify the expression on the left-hand side and compare it with λcosθ\lambda \cos\theta. The key to simplifying this expression lies in recognizing the numerator and denominator as expansions of powers of cosine in terms of multiple angles. These expansions are derived from De Moivre's theorem.

Let's recall the general formulas for expressing powers of cosθ\cos\theta in terms of multiple angles: Using 2cosθ=eiθ+eiθ2\cos\theta = e^{i\theta} + e^{-i\theta}, we have (2cosθ)n=(eiθ+eiθ)n(2\cos\theta)^n = (e^{i\theta} + e^{-i\theta})^n. By binomial expansion and pairing terms, we get:

  1. If nn is an odd integer: 2n1cosnθ=(n0)cosnθ+(n1)cos(n2)θ++(n(n1)/2)cosθ2^{n-1}\cos^n\theta = \binom{n}{0}\cos n\theta + \binom{n}{1}\cos(n-2)\theta + \dots + \binom{n}{(n-1)/2}\cos\theta This can be written as: 2n1cosnθ=k=0(n1)/2(nk)cos((n2k)θ)2^{n-1}\cos^n\theta = \sum_{k=0}^{(n-1)/2} \binom{n}{k} \cos((n-2k)\theta)

  2. If nn is an even integer: 2n1cosnθ=(n0)cosnθ+(n1)cos(n2)θ++(nn/21)cos2θ+12(nn/2)2^{n-1}\cos^n\theta = \binom{n}{0}\cos n\theta + \binom{n}{1}\cos(n-2)\theta + \dots + \binom{n}{n/2 - 1}\cos2\theta + \frac{1}{2}\binom{n}{n/2} This can be written as: 2n1cosnθ=k=0n/21(nk)cos((n2k)θ)+12(nn/2)2^{n-1}\cos^n\theta = \sum_{k=0}^{n/2-1} \binom{n}{k} \cos((n-2k)\theta) + \frac{1}{2}\binom{n}{n/2}

Let's analyze the denominator: D=cos5θ+5cos3θ+10cosθD = \cos5\theta + 5\cos3\theta + 10\cos\theta. Comparing this with the formula for odd nn, we can see that for n=5n=5: 251cos5θ=(50)cos(5θ)+(51)cos(52)θ+(52)cos(54)θ2^{5-1}\cos^5\theta = \binom{5}{0}\cos(5\theta) + \binom{5}{1}\cos(5-2)\theta + \binom{5}{2}\cos(5-4)\theta 16cos5θ=1cos5θ+5cos3θ+10cosθ16\cos^5\theta = 1\cos5\theta + 5\cos3\theta + 10\cos\theta Thus, the denominator D=16cos5θD = 16\cos^5\theta.

Now, let's analyze the numerator: N=cos6θ+6cos4θ+15cos2θ+10N = \cos6\theta + 6\cos4\theta + 15\cos2\theta + 10. Comparing this with the formula for even nn, we can see that for n=6n=6: 261cos6θ=(60)cos(6θ)+(61)cos(62)θ+(62)cos(64)θ+12(66/2)2^{6-1}\cos^6\theta = \binom{6}{0}\cos(6\theta) + \binom{6}{1}\cos(6-2)\theta + \binom{6}{2}\cos(6-4)\theta + \frac{1}{2}\binom{6}{6/2} 32cos6θ=1cos6θ+6cos4θ+15cos2θ+12(63)32\cos^6\theta = 1\cos6\theta + 6\cos4\theta + 15\cos2\theta + \frac{1}{2}\binom{6}{3} We know (63)=6×5×43×2×1=20\binom{6}{3} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20. So, 32cos6θ=cos6θ+6cos4θ+15cos2θ+12(20)32\cos^6\theta = \cos6\theta + 6\cos4\theta + 15\cos2\theta + \frac{1}{2}(20) 32cos6θ=cos6θ+6cos4θ+15cos2θ+1032\cos^6\theta = \cos6\theta + 6\cos4\theta + 15\cos2\theta + 10 Thus, the numerator N=32cos6θN = 32\cos^6\theta.

Now, substitute these simplified expressions for the numerator and denominator back into the original equation: ND=32cos6θ16cos5θ\frac{N}{D} = \frac{32\cos^6\theta}{16\cos^5\theta} 32cos6θ16cos5θ=2cosθ\frac{32\cos^6\theta}{16\cos^5\theta} = 2\cos\theta We are given that cos6θ+6cos4θ+15cos2θ+10cos5θ+5cos3θ+10cosθ=λcosθ\frac{cos6\theta + 6cos4\theta + 15cos2\theta + 10}{cos5\theta + 5cos3\theta + 10cos\theta} = \lambda cos\theta. Comparing our result with the given equation: 2cosθ=λcosθ2\cos\theta = \lambda \cos\theta Assuming cosθ0\cos\theta \neq 0 (as the expression would be undefined otherwise), we can cancel cosθ\cos\theta from both sides: λ=2\lambda = 2