Solveeit Logo

Question

Question: .\(\frac{\cos A}{1 - \sin A} =\)...

.cosA1sinA=\frac{\cos A}{1 - \sin A} =

A

secAtanA\sec A - \tan A

B

cosecA+cotA\text{cosec}A + \cot A

C

tan(π4A2)\tan\left( \frac{\pi}{4} - \frac{A}{2} \right)

D

tan(π4+A2)\tan\left( \frac{\pi}{4} + \frac{A}{2} \right)

Answer

tan(π4+A2)\tan\left( \frac{\pi}{4} + \frac{A}{2} \right)

Explanation

Solution

cosA1sinA=cosA(1+sinA)cos2A=(1+sinA)cosA\frac{\cos A}{1 - \sin A} = \frac{\cos A(1 + \sin A)}{\cos^{2}A} = \frac{(1 + \sin A)}{\cos A}

=(cosA2+sinA2)2(cosA2+sinA2)(cosA2sinA2)=cosA2+sinA2cosA2sinA2= \frac{\left( \cos\frac{A}{2} + \sin\frac{A}{2} \right)^{2}}{\left( \cos\frac{A}{2} + \sin\frac{A}{2} \right)\left( \cos\frac{A}{2} - \sin\frac{A}{2} \right)} = \frac{\cos\frac{A}{2} + \sin\frac{A}{2}}{\cos\frac{A}{2} - \sin\frac{A}{2}}

=1+tanA21tanA2= \frac{1 + \tan\frac{A}{2}}{1 - \tan\frac{A}{2}}, (DividingNrandDrbycosA2)\left( \text{Dividing}N^{r}\text{and}D^{r}\text{by}\cos\frac{A}{2} \right)

=tan(π4+A2)= \tan\left( \frac{\pi}{4} + \frac{A}{2} \right).