Question
Question: \(\frac{C_{0}}{1} + \frac{C_{1}}{2} + \frac{C_{2}}{3} + ..... + \frac{C_{n}}{n + 1} =\)...
1C0+2C1+3C2+.....+n+1Cn=
A
n+12n
B
n+12n−1
C
n+12n+1−1
D
None
Answer
n+12n+1−1
Explanation
Solution
Consider the expansion
(1+x)n=C0+C1x+C2x2+....+Cnxn.....(i)
Integrating both sides of (i) within limits 0 to 1 we get, ∫01(1+x)ndx=∫01C0+∫01C1x+∫01C2x2+.......+∫01Cnxndx
[n+1(1+x)n+1]01=C0[x]01+C1[2x2]01+........+Cn[n+1xn+1]01
n+12n+1−n+11=C0[1]+C121+C231+.......Cn.n+11; C0+2C1+3C2+....n+1Cn=n+12n+1−1.