Solveeit Logo

Question

Question: $\frac{Br_2}{2} + OH^{\ominus} \longrightarrow Br^{\ominus} + BrO_3^{\ominus} + n_2O$ (Hot conc.) r...

Br22+OHBr+BrO3+n2O\frac{Br_2}{2} + OH^{\ominus} \longrightarrow Br^{\ominus} + BrO_3^{\ominus} + n_2O (Hot conc.)

red"

nred=210=2n_{red}=2|-1-0|=2

noxidn=250=10n_{oxid^{n}}=2|5-0|=10

Answer

3Br_2 + 6OH^{\ominus} \longrightarrow 5Br^{\ominus} + BrO_3^{\ominus} + 3H_2O

Explanation

Solution

The given reaction is a disproportionation reaction of Bromine in a hot concentrated hydroxide solution. Bromine (oxidation state 0) is simultaneously reduced to Bromide (oxidation state -1) and oxidized to Bromate (oxidation state +5).

The provided calculations are for the number of electrons transferred per Br2Br_2 molecule in each half-reaction:

  1. Reduction half-reaction: Br2BrBr_2 \longrightarrow Br^{\ominus}

    • Oxidation state of Br changes from 0 to -1.
    • For one Br atom, the change is 10=1|-1 - 0| = 1.
    • Since Br2Br_2 molecule contains 2 Br atoms, the total number of electrons gained (nredn_{red}) by one Br2Br_2 molecule is 2×10=2×1=22 \times |-1 - 0| = 2 \times 1 = 2.
    • This corresponds to the provided nred=210=2n_{red}=2|-1-0|=2.
  2. Oxidation half-reaction: Br2BrO3Br_2 \longrightarrow BrO_3^{\ominus}

    • Oxidation state of Br changes from 0 to +5.
    • For one Br atom, the change is +50=5|+5 - 0| = 5.
    • Since Br2Br_2 molecule contains 2 Br atoms, the total number of electrons lost (noxidnn_{oxid^n}) by one Br2Br_2 molecule is 2×+50=2×5=102 \times |+5 - 0| = 2 \times 5 = 10.
    • This corresponds to the provided noxidn=250=10n_{oxid^{n}}=2|5-0|=10.

These values are crucial for balancing the redox reaction using the oxidation state method or ion-electron method. The number of electrons gained must equal the number of electrons lost.

Balancing the reaction using the Ion-Electron Method (in basic medium):

Step 1: Write the unbalanced half-reactions. Reduction: Br2BrBr_2 \longrightarrow Br^{\ominus} Oxidation: Br2BrO3Br_2 \longrightarrow BrO_3^{\ominus}

Step 2: Balance atoms other than O and H. Reduction: Br22BrBr_2 \longrightarrow 2Br^{\ominus} Oxidation: Br22BrO3Br_2 \longrightarrow 2BrO_3^{\ominus}

Step 3: Balance O atoms by adding H2OH_2O and H atoms by adding HH^{\oplus}. Then neutralize HH^{\oplus} with OHOH^{\ominus} for basic medium.

  • Reduction half-reaction: No O or H atoms. Br22BrBr_2 \longrightarrow 2Br^{\ominus}
  • Oxidation half-reaction: Br22BrO3Br_2 \longrightarrow 2BrO_3^{\ominus} (6 oxygen atoms on RHS) Balance O by adding H2OH_2O: Br2+6H2O2BrO3Br_2 + 6H_2O \longrightarrow 2BrO_3^{\ominus} (12 H atoms on LHS) Balance H by adding HH^{\oplus}: Br2+6H2O2BrO3+12HBr_2 + 6H_2O \longrightarrow 2BrO_3^{\ominus} + 12H^{\oplus} Since the reaction is in basic medium, add 12OH12OH^{\ominus} to both sides to neutralize HH^{\oplus}: Br2+6H2O+12OH2BrO3+12H+12OHBr_2 + 6H_2O + 12OH^{\ominus} \longrightarrow 2BrO_3^{\ominus} + 12H^{\oplus} + 12OH^{\ominus} Combine HH^{\oplus} and OHOH^{\ominus} to form H2OH_2O: Br2+6H2O+12OH2BrO3+12H2OBr_2 + 6H_2O + 12OH^{\ominus} \longrightarrow 2BrO_3^{\ominus} + 12H_2O Cancel H2OH_2O molecules: Br2+12OH2BrO3+6H2OBr_2 + 12OH^{\ominus} \longrightarrow 2BrO_3^{\ominus} + 6H_2O

Step 4: Balance charges by adding electrons.

  • Reduction half-reaction: Br2+2e2BrBr_2 + 2e^{\ominus} \longrightarrow 2Br^{\ominus} (Charge: 0 on LHS, -2 on RHS. Add 2 electrons to LHS)
  • Oxidation half-reaction: Br2+12OH2BrO3+6H2OBr_2 + 12OH^{\ominus} \longrightarrow 2BrO_3^{\ominus} + 6H_2O (Charge: -12 on LHS, -2 on RHS. Add 10 electrons to RHS) Br2+12OH2BrO3+6H2O+10eBr_2 + 12OH^{\ominus} \longrightarrow 2BrO_3^{\ominus} + 6H_2O + 10e^{\ominus}

Step 5: Make the number of electrons equal in both half-reactions. Multiply the reduction half-reaction by 5 and the oxidation half-reaction by 1 (to get 10 electrons on both sides). Reduction: 5(Br2+2e2Br)    5Br2+10e10Br5(Br_2 + 2e^{\ominus} \longrightarrow 2Br^{\ominus}) \implies 5Br_2 + 10e^{\ominus} \longrightarrow 10Br^{\ominus} Oxidation: 1(Br2+12OH2BrO3+6H2O+10e)    Br2+12OH2BrO3+6H2O+10e1(Br_2 + 12OH^{\ominus} \longrightarrow 2BrO_3^{\ominus} + 6H_2O + 10e^{\ominus}) \implies Br_2 + 12OH^{\ominus} \longrightarrow 2BrO_3^{\ominus} + 6H_2O + 10e^{\ominus}

Step 6: Add the balanced half-reactions and simplify. 5Br2+10e10Br5Br_2 + 10e^{\ominus} \longrightarrow 10Br^{\ominus} Br2+12OH2BrO3+6H2O+10eBr_2 + 12OH^{\ominus} \longrightarrow 2BrO_3^{\ominus} + 6H_2O + 10e^{\ominus}

6Br2+12OH10Br+2BrO3+6H2O6Br_2 + 12OH^{\ominus} \longrightarrow 10Br^{\ominus} + 2BrO_3^{\ominus} + 6H_2O

Divide all coefficients by 2 to get the simplest integer coefficients: 3Br2+6OH5Br+BrO3+3H2O3Br_2 + 6OH^{\ominus} \longrightarrow 5Br^{\ominus} + BrO_3^{\ominus} + 3H_2O

The balanced chemical equation is: 3Br2+6OH5Br+BrO3+3H2O3Br_2 + 6OH^{\ominus} \longrightarrow 5Br^{\ominus} + BrO_3^{\ominus} + 3H_2O

The provided values nred=2n_{red}=2 and noxidn=10n_{oxid^n}=10 are correctly calculated and represent the number of electrons transferred per Br2Br_2 molecule in the reduction and oxidation pathways respectively.

The final answer is 3Br2+6OH5Br+BrO3+3H2O\boxed{3Br_2 + 6OH^{\ominus} \longrightarrow 5Br^{\ominus} + BrO_3^{\ominus} + 3H_2O}

Explanation of the solution: The given reaction is a disproportionation of Br2Br_2 in basic medium. The oxidation state of Br changes from 0 to -1 (reduction) and from 0 to +5 (oxidation).

  1. Calculate electrons transferred (nn-factors for half-reactions):
    • For reduction (Br2BrBr_2 \to Br^-): Each Br atom gains 1 electron. Since Br2Br_2 has two Br atoms, nred=2×1=2n_{red} = 2 \times 1 = 2.
    • For oxidation (Br2BrO3Br_2 \to BrO_3^-): Each Br atom loses 5 electrons. Since Br2Br_2 has two Br atoms, noxidn=2×5=10n_{oxid^n} = 2 \times 5 = 10.
  2. Balance electron transfer: To balance the electrons, the least common multiple of 2 and 10 is 10. This means 5 molecules of Br2Br_2 are reduced (5 * 2 = 10 electrons gained) and 1 molecule of Br2Br_2 is oxidized (1 * 10 = 10 electrons lost). Total Br2Br_2 on reactant side will be 5+1=65+1=6.
  3. Balance half-reactions in basic medium:
    • Reduction: Br2+2e2BrBr_2 + 2e^{\ominus} \longrightarrow 2Br^{\ominus} (multiplied by 5)
    • Oxidation: Br2+12OH2BrO3+6H2O+10eBr_2 + 12OH^{\ominus} \longrightarrow 2BrO_3^{\ominus} + 6H_2O + 10e^{\ominus} (multiplied by 1)
  4. Combine and simplify: Add the balanced half-reactions and divide by the common factor (2) to get the simplest integer coefficients.

Answer: The balanced chemical equation is: 3Br2+6OH5Br+BrO3+3H2O3Br_2 + 6OH^{\ominus} \longrightarrow 5Br^{\ominus} + BrO_3^{\ominus} + 3H_2O

The provided nred=210=2n_{red}=2|-1-0|=2 and noxidn=250=10n_{oxid^{n}}=2|5-0|=10 correctly represent the number of electrons gained and lost per Br2Br_2 molecule in the reduction and oxidation pathways, respectively.