Solveeit Logo

Question

Question: \(\frac{a^{3}}{2}co\text{se}\text{c}^{2}\left( \frac{1}{2}\tan^{- 1}\frac{a}{b} \right) + \frac{b^{3...

a32cosec2(12tan1ab)+b32sec2(12tan1ba)\frac{a^{3}}{2}co\text{se}\text{c}^{2}\left( \frac{1}{2}\tan^{- 1}\frac{a}{b} \right) + \frac{b^{3}}{2}\sec^{2}\left( \frac{1}{2}\tan^{- 1}\frac{b}{a} \right) is equal to

A

(ab)(a2+b2)(a - b)(a^{2} + b^{2})

B

(a+b)(a2b2)(a + b)(a^{2} - b^{2})

C

(a+b)(a2+b2)(a + b)(a^{2} + b^{2})

D

None of these

Answer

(a+b)(a2+b2)(a + b)(a^{2} + b^{2})

Explanation

Solution

Let tan1ab=θ,tan1ba=φ\tan^{- 1}\frac{a}{b} = \theta,\tan^{- 1}\frac{b}{a} = \varphi\therefore tanθ=ab,tanφ=ba\tan\theta = \frac{a}{b},\tan\varphi = \frac{b}{a}

a32cosec2(12tan1ab)+b32sec2(12tan1ba)\frac{a^{3}}{2}c\text{ose}\text{c}^{2}\left( \frac{1}{2}\tan^{- 1}\frac{a}{b} \right) + \frac{b^{3}}{2}\sec^{2}\left( \frac{1}{2}\tan^{- 1}\frac{b}{a} \right)

=a32sin2(θ2)\frac{a^{3}}{2\sin^{2}\left( \frac{\theta}{2} \right)}+b32cos2(φ2)\frac{b^{3}}{2\cos^{2}\left( \frac{\varphi}{2} \right)}

=a31cosθ+b31+cosφ=a31ba2+b2+b31+aa2+b2\frac{a^{3}}{1 - \cos\theta} + \frac{b^{3}}{1 + \cos\varphi} = \frac{a^{3}}{1 - \frac{b}{\sqrt{a^{2} + b^{2}}}} + \frac{b^{3}}{1 + \frac{a}{\sqrt{a^{2} + b^{2}}}}= a2+b2[a3[a2+b2+b](a2+b2)b2+b3[a2+b2a](a2+b2)a2]\sqrt{a^{2} + b^{2}}\left\lbrack \frac{a^{3}\lbrack\sqrt{a^{2} + b^{2}} + b\rbrack}{(a^{2} + b^{2}) - b^{2}} + \frac{b^{3}\lbrack\sqrt{a^{2} + b^{2}} - a\rbrack}{(a^{2} + b^{2}) - a^{2}} \right\rbrack (rationalized)

=a2+b2[a{a2+b2+b}+b{a2+b2a}]= \sqrt{a^{2} + b^{2}}\lbrack a\{\sqrt{a^{2} + b^{2}} + b\} + b\{\sqrt{a^{2} + b^{2}} - a\}\rbrack

= a2+b2[a2+b2(a+b)]=(a2+b2)(a+b)\sqrt{a^{2} + b^{2}}\lbrack\sqrt{a^{2} + b^{2}}(a + b)\rbrack = (a^{2} + b^{2})(a + b)