Solveeit Logo

Question

Question: $\frac{8}{\sqrt[3]{(2x^{2}-7x-5)^{11}}}$...

8(2x27x5)113\frac{8}{\sqrt[3]{(2x^{2}-7x-5)^{11}}}

Answer

8(2x^{2}-7x-5)^{-11/3}

Explanation

Solution

The given expression is 8(2x27x5)113\frac{8}{\sqrt[3]{(2x^{2}-7x-5)^{11}}}.

Step 1: Convert the cube root into a fractional exponent.

We know that An=A1/n\sqrt[n]{A} = A^{1/n}. So, (2x27x5)113=((2x27x5)11)1/3\sqrt[3]{(2x^{2}-7x-5)^{11}} = ((2x^{2}-7x-5)^{11})^{1/3}.

Step 2: Apply the power of a power rule, (am)n=amn(a^m)^n = a^{mn}.

((2x27x5)11)1/3=(2x27x5)11×13=(2x27x5)113((2x^{2}-7x-5)^{11})^{1/3} = (2x^{2}-7x-5)^{11 \times \frac{1}{3}} = (2x^{2}-7x-5)^{\frac{11}{3}}.

Step 3: Rewrite the expression with the simplified denominator.

The expression becomes 8(2x27x5)113\frac{8}{(2x^{2}-7x-5)^{\frac{11}{3}}}.

Step 4: Use the rule 1an=an\frac{1}{a^n} = a^{-n} to move the term from the denominator to the numerator.

8(2x27x5)113=8×(2x27x5)113\frac{8}{(2x^{2}-7x-5)^{\frac{11}{3}}} = 8 \times (2x^{2}-7x-5)^{-\frac{11}{3}}.

The simplified expression is 8(2x27x5)11/38(2x^{2}-7x-5)^{-11/3}.