Solveeit Logo

Question

Question: $\frac{6}{5}a^{\log_a x.\log_{10} a.\log_a 5} - 3^{\log_{10}(x/10)} = 9^{\log_{100} x+\log_4 2}$...

65alogax.log10a.loga53log10(x/10)=9log100x+log42\frac{6}{5}a^{\log_a x.\log_{10} a.\log_a 5} - 3^{\log_{10}(x/10)} = 9^{\log_{100} x+\log_4 2}

Answer

100

Explanation

Solution

The equation was simplified by evaluating each term using logarithm properties. The first term 65alogax.log10a.loga5\frac{6}{5}a^{\log_a x.\log_{10} a.\log_a 5} simplifies to 655log10x\frac{6}{5} 5^{\log_{10} x}, independent of aa. The second term 3log10(x/10)- 3^{\log_{10}(x/10)} simplifies to 133log10x-\frac{1}{3} 3^{\log_{10} x}. The third term 9log100x+log429^{\log_{100} x+\log_4 2} simplifies to 33log10x3 \cdot 3^{\log_{10} x}. By setting Y=log10xY = \log_{10} x, the equation transforms into 655Y133Y=33Y\frac{6}{5} 5^Y - \frac{1}{3} 3^Y = 3 \cdot 3^Y. Rearranging and simplifying yields (53)Y=259(\frac{5}{3})^Y = \frac{25}{9}, which implies Y=2Y=2. Substituting back Y=log10x=2Y=\log_{10} x=2, we get x=102=100x=10^2=100.