Question
Question: \(\frac{3x - 4}{3x + 4}\) = t 3x – 4 = 3xt + 4t x = \(\frac{4t + 4}{3(1 - t)}\) f(t) = \(\frac{4t + ...
3x+43x−4 = t 3x – 4 = 3xt + 4t x = 3(1−t)4t+4 f(t) = 3(1−t)4t+4 + 2 f(x) = 3(1−x)4x+4 + 2 = 3(1−x)4(x−1)+8 + 2
f(x) = 2 – 34 – 3(x−1)8 = 32−3(x−1)8 ∫f(x)dx = 32x – 38ln |x – 1| + c
A
2cos2x+ c
B
sin 2x + c
C
– sinx + c
D
None
Answer
– sinx + c
Explanation
Solution
0 < x < p/2 , 0 < sinx < 1
limn→∞ (sin x)n ® 0
f(x) = (sinx)2n+1(sinx)2n−1 = – 1
= – sin x + c