Solveeit Logo

Question

Question: \(\frac{3x - 4}{3x + 4}\) = t 3x – 4 = 3xt + 4t x = \(\frac{4t + 4}{3(1 - t)}\) f(t) = \(\frac{4t + ...

3x43x+4\frac{3x - 4}{3x + 4} = t 3x – 4 = 3xt + 4t x = 4t+43(1t)\frac{4t + 4}{3(1 - t)} f(t) = 4t+43(1t)\frac{4t + 4}{3(1 - t)} + 2 f(x) = 4x+43(1x)\frac{4x + 4}{3(1 - x)} + 2 = 4(x1)+83(1x)\frac{4(x - 1) + 8}{3(1 - x)} + 2

f(x) = 2 – 43\frac{4}{3}83(x1)\frac{8}{3(x - 1)} = 2383(x1)\frac { 2 } { 3 } - \frac { 8 } { 3 ( x - 1 ) } f(x)dx\int_{}^{}{f(x)dx} = 23\frac{2}{3}x – 83\frac{8}{3}ln |x – 1| + c

A

cos2x2\frac{\cos 2x}{2}+ c

B

sin 2x + c

C

– sinx + c

D

None

Answer

– sinx + c

Explanation

Solution

0 < x < p/2 , 0 < sinx < 1

limn\lim_{n \rightarrow \infty} (sin x)n ® 0

f(x) = (sinx)2n1(sinx)2n+1\frac{(\sin x)^{2n} - 1}{(\sin x)^{2n} + 1} = – 1

= – sin x + c