Solveeit Logo

Question

Question: \[\frac{2\sin\theta\tan\theta(1 - \tan\theta) + 2\sin\theta\sec^{2}\theta}{(1 + \tan\theta)^{2}} =\]...

2sinθtanθ(1tanθ)+2sinθsec2θ(1+tanθ)2=\frac{2\sin\theta\tan\theta(1 - \tan\theta) + 2\sin\theta\sec^{2}\theta}{(1 + \tan\theta)^{2}} =

A

sinθ1+tanθ\frac{\sin\theta}{1 + \tan\theta}

B

2sinθ1+tanθ\frac{2\sin\theta}{1 + \tan\theta}

C

2sinθ(1+tanθ)2\frac{2\sin\theta}{(1 + \tan\theta)^{2}}

D

None of these

Answer

2sinθ1+tanθ\frac{2\sin\theta}{1 + \tan\theta}

Explanation

Solution

Given expression =2sinθ(1+tanθ)2{tanθ(1tanθ)+sec2θ}= \frac{2\sin\theta}{(1 + \tan\theta)^{2}}\left\{ \tan\theta(1 - \tan\theta) + \sec^{2}\theta \right\}

=2sinθ(1+tanθ)2{tanθtan2θ+1+tan2θ}=2sinθ1+tanθ= \frac{2\sin\theta}{(1 + \tan\theta)^{2}}\left\{ \tan\theta - \tan^{2}{}\theta + 1 + \tan^{2}\theta \right\} = \frac{2\sin\theta}{1 + \tan\theta}.