Solveeit Logo

Question

Question: $\frac{2h}{c} = t - \frac{1}{t^3}$ ① $\frac{2k}{c} = \frac{1}{t} - t^3$ ②...

2hc=t1t3\frac{2h}{c} = t - \frac{1}{t^3}

2kc=1tt3\frac{2k}{c} = \frac{1}{t} - t^3

Answer

c^2 (h^2 - k^2)^2 + 4h^3 k^3 = 0

Explanation

Solution

Let the given equations be:

  1. 2hc=t1t3\frac{2h}{c} = t - \frac{1}{t^3}
  2. 2kc=1tt3\frac{2k}{c} = \frac{1}{t} - t^3

Let A=2hcA = \frac{2h}{c} and B=2kcB = \frac{2k}{c}. The equations become:

A=t1t3A = t - \frac{1}{t^3}

B=1tt3B = \frac{1}{t} - t^3

We can rewrite the second equation as B=t2t3t3B = \frac{t^2}{t^3} - t^3. This doesn't look useful. Let's rewrite the second equation as B=1tt3B = \frac{1}{t} - t^3.

Consider multiplying the first equation by t3t^3:

At3=t41A t^3 = t^4 - 1

Consider multiplying the second equation by tt:

Bt=1t4B t = 1 - t^4

From these two equations, we see that At3=(Bt)A t^3 = -(B t).

At3+Bt=0A t^3 + B t = 0

t(At2+B)=0t(A t^2 + B) = 0

Assuming t0t \neq 0 (otherwise the original expressions are undefined), we must have:

At2+B=0A t^2 + B = 0

Substitute back A=2hcA = \frac{2h}{c} and B=2kcB = \frac{2k}{c}:

(2hc)t2+(2kc)=0\left(\frac{2h}{c}\right) t^2 + \left(\frac{2k}{c}\right) = 0

2c(ht2+k)=0\frac{2}{c} (h t^2 + k) = 0

Since c0c \neq 0, we have:

ht2+k=0h t^2 + k = 0

If h0h \neq 0, we can write t2=kht^2 = -\frac{k}{h}.

Now substitute t2=k/ht^2 = -k/h into the original equations. From equation ①:

2hc=t1t3=t1tt2=t1t(k/h)=t+hkt\frac{2h}{c} = t - \frac{1}{t^3} = t - \frac{1}{t \cdot t^2} = t - \frac{1}{t (-k/h)} = t + \frac{h}{kt}

2hc=t+hkt\frac{2h}{c} = t + \frac{h}{kt}

Multiply by ktkt:

2hktc=kt2+h\frac{2hkt}{c} = kt^2 + h

Substitute t2=k/ht^2 = -k/h:

2hktc=k(kh)+h=k2h+h=h2k2h\frac{2hkt}{c} = k\left(-\frac{k}{h}\right) + h = -\frac{k^2}{h} + h = \frac{h^2 - k^2}{h}

2hktc=h2k2h\frac{2hkt}{c} = \frac{h^2 - k^2}{h}

2hk2t=c(h2k2)2hk^2 t = c(h^2 - k^2)

If h0h \neq 0 and k0k \neq 0, we can solve for tt:

t=c(h2k2)2hk2t = \frac{c(h^2 - k^2)}{2hk^2}

Square both sides:

t2=(c(h2k2)2hk2)2=c2(h2k2)24h2k4t^2 = \left(\frac{c(h^2 - k^2)}{2hk^2}\right)^2 = \frac{c^2 (h^2 - k^2)^2}{4h^2 k^4}

We also have t2=kht^2 = -\frac{k}{h}. Equating the two expressions for t2t^2:

kh=c2(h2k2)24h2k4-\frac{k}{h} = \frac{c^2 (h^2 - k^2)^2}{4h^2 k^4}

Assuming h0h \neq 0 and k0k \neq 0, multiply both sides by 4h2k44h^2 k^4:

k(4hk4)=c2(h2k2)2h-k (4h k^4) = c^2 (h^2 - k^2)^2 h

4hk5=c2h(h2k2)2-4h k^5 = c^2 h (h^2 - k^2)^2

If h0h \neq 0, we can divide by hh:

4k5=c2(h2k2)2-4 k^5 = c^2 (h^2 - k^2)^2

This equation must hold if a value of tt exists.

Let's check the case h=0h=0.

If h=0h=0, the first equation becomes 2(0)c=t1t3\frac{2(0)}{c} = t - \frac{1}{t^3}, so 0=t1t30 = t - \frac{1}{t^3}, which implies t4=1t^4 = 1. The second equation is 2kc=1tt3\frac{2k}{c} = \frac{1}{t} - t^3. If t4=1t^4 = 1, then t=±1t = \pm 1 or t=±it = \pm i.

If t=1t=1, 2kc=113=0\frac{2k}{c} = 1 - 1^3 = 0, so k=0k=0. If t=1t=-1, 2kc=11(1)3=1(1)=0\frac{2k}{c} = \frac{1}{-1} - (-1)^3 = -1 - (-1) = 0, so k=0k=0. If t=it=i, 2kc=1ii3=i(i)=0\frac{2k}{c} = \frac{1}{i} - i^3 = -i - (-i) = 0, so k=0k=0. If t=it=-i, 2kc=1i(i)3=i(i)=0\frac{2k}{c} = \frac{1}{-i} - (-i)^3 = i - (i) = 0, so k=0k=0. So, if h=0h=0, then k=0k=0.

Let's check if h=0,k=0h=0, k=0 satisfies the derived relation 4k5=c2(h2k2)2-4 k^5 = c^2 (h^2 - k^2)^2.

4(0)5=c2(0202)2-4 (0)^5 = c^2 (0^2 - 0^2)^2

0=c2(0)20 = c^2 (0)^2

0=00 = 0. So the relation holds for h=0,k=0h=0, k=0.

The derived relation is 4k5=c2(h2k2)2-4 k^5 = c^2 (h^2 - k^2)^2. This can be rewritten as c2(h2k2)2+4k5=0c^2 (h^2 - k^2)^2 + 4 k^5 = 0.

Let's verify this relation using the expression for tt. We have t2=k/ht^2 = -k/h. Substitute this into the first equation:

2hc=t1t3=t(11t4)\frac{2h}{c} = t - \frac{1}{t^3} = t \left(1 - \frac{1}{t^4}\right)

2hc=t(11(t2)2)=t(11(k/h)2)=t(1h2k2)=t(k2h2k2)\frac{2h}{c} = t \left(1 - \frac{1}{(t^2)^2}\right) = t \left(1 - \frac{1}{(-k/h)^2}\right) = t \left(1 - \frac{h^2}{k^2}\right) = t \left(\frac{k^2 - h^2}{k^2}\right)

2hc=t(h2k2k2)\frac{2h}{c} = -t \left(\frac{h^2 - k^2}{k^2}\right)

t=2hck2h2k2=2hk2c(k2h2)t = -\frac{2h}{c} \frac{k^2}{h^2 - k^2} = \frac{2h k^2}{c (k^2 - h^2)}

This matches the expression for tt we found earlier: t=c(h2k2)2hk2t = \frac{c(h^2 - k^2)}{2hk^2}.

2hk2c(k2h2)=c(h2k2)2hk2\frac{2h k^2}{c (k^2 - h^2)} = \frac{c(h^2 - k^2)}{2hk^2}

(2hk2)2=c2(k2h2)(h2k2)(2h k^2)^2 = c^2 (k^2 - h^2)(h^2 - k^2)

4h2k4=c2((h2k2))(h2k2)4h^2 k^4 = c^2 (-(h^2 - k^2))(h^2 - k^2)

4h2k4=c2(h2k2)24h^2 k^4 = -c^2 (h^2 - k^2)^2

c2(h2k2)2+4h2k4=0c^2 (h^2 - k^2)^2 + 4h^2 k^4 = 0

Let's recheck the step t2=kht^2 = -\frac{k}{h}.

ht2+k=0h t^2 + k = 0. This step is correct.

Let's look at the second equation:

2kc=1tt3=1t(1t4)=1t(1(t2)2)=1t(1(k/h)2)=1t(1h2/k2)=1t(k2h2k2)\frac{2k}{c} = \frac{1}{t} - t^3 = \frac{1}{t}(1 - t^4) = \frac{1}{t}(1 - (t^2)^2) = \frac{1}{t}(1 - (-k/h)^2) = \frac{1}{t}(1 - h^2/k^2) = \frac{1}{t}\left(\frac{k^2 - h^2}{k^2}\right)

2kc=1t(k2h2k2)\frac{2k}{c} = \frac{1}{t} \left(\frac{k^2 - h^2}{k^2}\right)

t=c2k(k2h2k2)=c(k2h2)2k3t = \frac{c}{2k} \left(\frac{k^2 - h^2}{k^2}\right) = \frac{c (k^2 - h^2)}{2k^3}

Equating the two expressions for tt:

c(h2k2)2hk2=c(k2h2)2k3\frac{c(h^2 - k^2)}{2hk^2} = \frac{c (k^2 - h^2)}{2k^3}

Assuming c0c \neq 0, h0h \neq 0, k0k \neq 0:

h2k2hk2=k2h2k3\frac{h^2 - k^2}{h k^2} = \frac{k^2 - h^2}{k^3}

h2k2hk2=h2k2k3\frac{h^2 - k^2}{h k^2} = -\frac{h^2 - k^2}{k^3}

h2k2hk2+h2k2k3=0\frac{h^2 - k^2}{h k^2} + \frac{h^2 - k^2}{k^3} = 0

(h2k2)(1hk2+1k3)=0(h^2 - k^2) \left(\frac{1}{h k^2} + \frac{1}{k^3}\right) = 0

(h2k2)(k+hhk3)=0(h^2 - k^2) \left(\frac{k + h}{h k^3}\right) = 0

This implies either h2k2=0h^2 - k^2 = 0 or k+h=0k+h=0.

h2=k2h^2 = k^2 or h=kh = -k. If h2=k2h^2 = k^2, then h=±kh = \pm k.

If h=kh = k, then h2k2=0h^2 - k^2 = 0. If h=kh = -k, then h2k2=(k)2k2=0h^2 - k^2 = (-k)^2 - k^2 = 0.

So, if h2=k2h^2 = k^2, the equation (h2k2)(k+hhk3)=0(h^2 - k^2) \left(\frac{k + h}{h k^3}\right) = 0 is satisfied.

In this case, t2=k/h=k/(±k)=1t^2 = -k/h = -k/(\pm k) = \mp 1. If h=kh=k, t2=1t^2 = -1. The equations become:

2hc=t1t3\frac{2h}{c} = t - \frac{1}{t^3}

2hc=1tt3\frac{2h}{c} = \frac{1}{t} - t^3

So t1t3=1tt3t - \frac{1}{t^3} = \frac{1}{t} - t^3.

t+t3=1t+1t3t + t^3 = \frac{1}{t} + \frac{1}{t^3}.

t(1+t2)=1t3(t2+1)t(1 + t^2) = \frac{1}{t^3}(t^2 + 1).

Since t2=1t^2 = -1, t2+1=0t^2 + 1 = 0. So t(0)=1t3(0)t(0) = \frac{1}{t^3}(0), which is 0=00=0.

This means if t2=1t^2 = -1 (i.e., t=±it = \pm i), then t1/t3=1/tt3t - 1/t^3 = 1/t - t^3. If t=it=i, i1/i3=i(1/i)=i+1/i=ii=0i - 1/i^3 = i - (-1/i) = i + 1/i = i - i = 0. 1/ii3=i(i)=01/i - i^3 = -i - (-i) = 0. So 2hc=0\frac{2h}{c} = 0, which means h=0h=0. But we assumed h=kh=k, so k=0k=0.

This leads back to the h=0,k=0h=0, k=0 case, which means t4=1t^4=1. But here we got t2=1t^2=-1, so t4=1t^4=1. This is consistent. So if h=kh=k, the relationship is h=k=0h=k=0.

If h=kh = -k, then t2=k/(k)=1t^2 = -k/(-k) = 1. The equations become:

2hc=t1t3\frac{2h}{c} = t - \frac{1}{t^3}

2hc=1tt3\frac{-2h}{c} = \frac{1}{t} - t^3

So 2hc+2hc=(t1t3)+(1tt3)=t+1t(t3+1t3)\frac{2h}{c} + \frac{2h}{c} = (t - \frac{1}{t^3}) + (\frac{1}{t} - t^3) = t + \frac{1}{t} - (t^3 + \frac{1}{t^3}).

4hc=t+1t(t3+1t3)\frac{4h}{c} = t + \frac{1}{t} - (t^3 + \frac{1}{t^3}).

If t2=1t^2 = 1, then t=±1t = \pm 1. If t=1t=1, 4hc=1+1(1+1)=0\frac{4h}{c} = 1 + 1 - (1+1) = 0, so h=0h=0. Since h=kh=-k, k=0k=0. This is the h=0,k=0h=0, k=0 case again. If t=1t=-1, 4hc=1+11((1)3+1(1)3)=11(11)=2(2)=0\frac{4h}{c} = -1 + \frac{1}{-1} - ((-1)^3 + \frac{1}{(-1)^3}) = -1 - 1 - (-1 - 1) = -2 - (-2) = 0, so h=0h=0. Since h=kh=-k, k=0k=0. This is the h=0,k=0h=0, k=0 case again.

The relation c2(h2k2)2+4h2k4=0c^2 (h^2 - k^2)^2 + 4h^2 k^4 = 0 was derived assuming h0,k0h \neq 0, k \neq 0. Let's look at the derived relation c2(h2k2)2+4k5=0c^2 (h^2 - k^2)^2 + 4 k^5 = 0, derived from equating the expressions for t2t^2. This relation holds for h0h \neq 0. We checked that it holds for h=0,k=0h=0, k=0.

What if k=0k=0 and h0h \neq 0? If k=0k=0, the second equation is 2(0)c=1tt3\frac{2(0)}{c} = \frac{1}{t} - t^3, so 0=1tt30 = \frac{1}{t} - t^3, which means t4=1t^4 = 1. The first equation is 2hc=t1t3\frac{2h}{c} = t - \frac{1}{t^3}. If t4=1t^4 = 1, then 1t3=t4t31t3=t\frac{1}{t^3} = \frac{t^4}{t^3} \frac{1}{t^3} = t. So 2hc=tt=0\frac{2h}{c} = t - t = 0, which means h=0h=0. This contradicts the assumption h0h \neq 0. So, if k=0k=0, we must have h=0h=0.

The only case where the equations are satisfied is h=0,k=0h=0, k=0 with t4=1t^4=1, unless there is a general relation between h,k,ch, k, c that holds for any valid tt.

Let's re-examine At2+B=0A t^2 + B = 0.

2hct2+2kc=0    ht2+k=0\frac{2h}{c} t^2 + \frac{2k}{c} = 0 \implies h t^2 + k = 0.

If h0h \neq 0, t2=k/ht^2 = -k/h. We need another expression involving t2t^2 or t4t^4 or some power of tt that can be related to k/h-k/h.

Consider At3=t41A t^3 = t^4 - 1 and Bt=1t4B t = 1 - t^4. At3=(Bt)A t^3 = -(B t). t(At2+B)=0t(A t^2 + B) = 0. At2+B=0A t^2 + B = 0 (assuming t0t \neq 0).

2hct2+2kc=0\frac{2h}{c} t^2 + \frac{2k}{c} = 0.

ht2+k=0h t^2 + k = 0.

If c2(h2k2)2+4h3k3=0c^2(h^2 - k^2)^2 + 4h^3 k^3 = 0, can we find a tt?

If h=0h=0, then c2(k2)2=0    c2k4=0    k=0c^2(-k^2)^2 = 0 \implies c^2 k^4 = 0 \implies k=0. If h=k=0h=k=0, the original equations are 0=t1/t30 = t - 1/t^3 and 0=1/tt30 = 1/t - t^3, which means t4=1t^4=1. So any tt with t4=1t^4=1 works when h=k=0h=k=0.

If h0h \neq 0, then t2=k/ht^2 = -k/h. The relation c2(h2k2)2=4h3k3c^2(h^2 - k^2)^2 = -4h^3 k^3 implies that if hh and kk have the same sign (and are non-zero), then h3k3>0h^3 k^3 > 0, so 4h3k3<0-4h^3 k^3 < 0. Also (h2k2)20(h^2 - k^2)^2 \ge 0 and c2>0c^2 > 0. So c2(h2k2)20c^2(h^2 - k^2)^2 \ge 0. The equation c2(h2k2)2=4h3k3c^2(h^2 - k^2)^2 = -4h^3 k^3 can only hold if both sides are zero. This happens if h2k2=0h^2 - k^2 = 0 AND h3k3=0h^3 k^3 = 0. h3k3=0h^3 k^3 = 0 implies h=0h=0 or k=0k=0. If h=0h=0, then k=0k=0 (from h2k2=0h^2 - k^2 = 0). If k=0k=0, then h=0h=0 (from h2k2=0h^2 - k^2 = 0). So, if hh and kk have the same sign (and are non-zero), the equation c2(h2k2)2+4h3k3=0c^2(h^2 - k^2)^2 + 4h^3 k^3 = 0 only holds if h=k=0h=k=0.

What if hh and kk have opposite signs? Let k=mk = -m where m>0m > 0. Assume h>0h > 0. c2(h2(m)2)2+4h3(m)3=0c^2(h^2 - (-m)^2)^2 + 4h^3 (-m)^3 = 0 c2(h2m2)24h3m3=0c^2(h^2 - m^2)^2 - 4h^3 m^3 = 0 c2(h2m2)2=4h3m3c^2(h^2 - m^2)^2 = 4h^3 m^3. The left side is 0\ge 0. The right side is >0> 0 if h>0,m>0h > 0, m > 0. In this case, t2=k/h=(m)/h=m/h>0t^2 = -k/h = -(-m)/h = m/h > 0. So tt is real.

The expression for tt derived from equation ① is t=c(h2k2)2h2kt = \frac{c(h^2 - k^2)}{2h^2 k}. The expression for tt derived from equation ② is t=c(h2k2)2kh2t = \frac{c(h^2 - k^2)}{2kh^2}. These two expressions for tt are identical.

The substitution of t2=k/ht^2 = -k/h into the expression for tt should lead to an identity. t=c(h2k2)2h2kt = \frac{c(h^2 - k^2)}{2h^2 k}. t2=c2(h2k2)24h4k2t^2 = \frac{c^2(h^2 - k^2)^2}{4h^4 k^2}. We must have t2=k/ht^2 = -k/h. c2(h2k2)24h4k2=kh\frac{c^2(h^2 - k^2)^2}{4h^4 k^2} = -\frac{k}{h}. c2(h2k2)2h=k(4h4k2)c^2(h^2 - k^2)^2 h = -k (4h^4 k^2). c2(h2k2)2h=4h4k3c^2(h^2 - k^2)^2 h = -4h^4 k^3. Assuming h0h \neq 0, c2(h2k2)2=4h3k3c^2(h^2 - k^2)^2 = -4h^3 k^3.

c2(h2k2)2+4h3k3=0c^2(h^2 - k^2)^2 + 4h^3 k^3 = 0.