Question
Question: $\frac{2}{3}\int_{0}^{100}e^{\{x\}}dx$...
32∫0100e{x}dx

Answer
3200(e−1)
Explanation
Solution
The function e{x} is periodic with period 1. The integral of a periodic function f(x) with period T over an interval of length nT is n times the integral over one period: ∫0nTf(x)dx=n∫0Tf(x)dx. For x∈[0,1), {x}=x. Thus, ∫01e{x}dx=∫01exdx=e−1. Therefore, ∫0100e{x}dx=100(e−1). The required value is 32×100(e−1)=3200(e−1).