Solveeit Logo

Question

Question: $\frac{2}{3}\int_{0}^{100}e^{\{x\}}dx$...

230100e{x}dx\frac{2}{3}\int_{0}^{100}e^{\{x\}}dx

Answer

2003(e1)\frac{200}{3}(e-1)

Explanation

Solution

The function e{x}e^{\{x\}} is periodic with period 1. The integral of a periodic function f(x)f(x) with period TT over an interval of length nTnT is nn times the integral over one period: 0nTf(x)dx=n0Tf(x)dx\int_{0}^{nT} f(x) dx = n \int_{0}^{T} f(x) dx. For x[0,1)x \in [0, 1), {x}=x\{x\} = x. Thus, 01e{x}dx=01exdx=e1\int_{0}^{1} e^{\{x\}} dx = \int_{0}^{1} e^x dx = e-1. Therefore, 0100e{x}dx=100(e1)\int_{0}^{100} e^{\{x\}} dx = 100(e-1). The required value is 23×100(e1)=2003(e1)\frac{2}{3} \times 100(e-1) = \frac{200}{3}(e-1).