Solveeit Logo

Question

Question: \[\frac{2}{1}.\frac{1}{3} + \frac{3}{2}.\frac{1}{9} + \frac{4}{3}.\frac{1}{27} + \frac{5}{4}.\frac{1...

21.13+32.19+43.127+54.181+......=\frac{2}{1}.\frac{1}{3} + \frac{3}{2}.\frac{1}{9} + \frac{4}{3}.\frac{1}{27} + \frac{5}{4}.\frac{1}{81} + ......\infty =

A

12loge23\frac{1}{2} - \log_{e}\frac{2}{3}

B

loge23- \log_{e}\frac{2}{3}

C

12+loge(23)\frac{1}{2} + \log_{e}\left( \frac{2}{3} \right)

D

None of these

Answer

12loge23\frac{1}{2} - \log_{e}\frac{2}{3}

Explanation

Solution

nrn^{- r},

Where log10(nn1)\log_{10}\left( \frac{n}{n - 1} \right)

1rloge10\frac{1}{r\log_{e}10}

1rloge10- \frac{1}{r\log_{e}10}.

Trick : As the sum of the series upto 3 or 4 terms is approximately 0.9. Obviously (1) gives the value nearer to 0.9.