Solveeit Logo

Question

Question: $\frac{1}{x}e^{(-\infty)-x)}$...

1xe()x)\frac{1}{x}e^{(-\infty)-x)}

Answer

0

Explanation

Solution

The exponent is ()x(-\infty) - x. For any real number xx, this simplifies to -\infty. The expression becomes 1xe\frac{1}{x}e^{-\infty}. Since e=limyey=0e^{-\infty} = \lim_{y \to -\infty} e^y = 0, the expression is 1x×0\frac{1}{x} \times 0. For 1x\frac{1}{x} to be defined, x0x \neq 0. If x0x \neq 0, then 1x\frac{1}{x} is a finite number. The product of any finite number and 0 is 0. Thus, the value of the expression is 0, assuming x0x \neq 0.