Solveeit Logo

Question

Question: $\frac{1+x}{1-x} \theta \leftarrow x$...

1+x1xθx\frac{1+x}{1-x} \theta \leftarrow x

Answer

tan(π4+θ)\tan\left(\frac{\pi}{4} + \theta\right)

Explanation

Solution

The provided input "1+x1xθx\frac{1+x}{1-x} \theta \leftarrow x" is ambiguous due to the non-standard notation "θx\theta \leftarrow x". However, in the context of JEE/NEET exams, the expression 1+x1x\frac{1+x}{1-x} frequently appears in problems involving trigonometric substitutions, particularly when dealing with inverse trigonometric functions or complex numbers.

The most common and relevant interpretation for this type of problem is to assume that the notation implies a relationship between xx and θ\theta, specifically a substitution that simplifies the expression. The standard substitution for the form 1+x1x\frac{1+x}{1-x} is x=tanθx = \tan \theta.

Solution:

Let's assume the implied task is to simplify the expression 1+x1x\frac{1+x}{1-x} by substituting x=tanθx = \tan \theta.

  1. Substitute x=tanθx = \tan \theta into the expression: 1+x1x=1+tanθ1tanθ\frac{1+x}{1-x} = \frac{1+\tan \theta}{1-\tan \theta}

  2. Recognize the trigonometric identity:

    The expression 1+tanθ1tanθ\frac{1+\tan \theta}{1-\tan \theta} is a standard trigonometric identity derived from the tangent addition formula, tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}. We know that tan(π4)=1\tan(\frac{\pi}{4}) = 1. So, we can rewrite the expression as: 1+tanθ1tanθ=tan(π4)+tanθ1tan(π4)tanθ\frac{1+\tan \theta}{1-\tan \theta} = \frac{\tan(\frac{\pi}{4}) + \tan \theta}{1 - \tan(\frac{\pi}{4})\tan \theta}

  3. Apply the tangent addition formula: tan(π4)+tanθ1tan(π4)tanθ=tan(π4+θ)\frac{\tan(\frac{\pi}{4}) + \tan \theta}{1 - \tan(\frac{\pi}{4})\tan \theta} = \tan\left(\frac{\pi}{4} + \theta\right)

Therefore, under the substitution x=tanθx = \tan \theta, the expression 1+x1x\frac{1+x}{1-x} simplifies to tan(π4+θ)\tan\left(\frac{\pi}{4} + \theta\right).

Explanation of the solution:

The expression 1+x1x\frac{1+x}{1-x} is a common form in trigonometry. By substituting x=tanθx = \tan \theta, it transforms into 1+tanθ1tanθ\frac{1+\tan \theta}{1-\tan \theta}. This is a direct application of the tangent addition formula tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}, with A=π4A = \frac{\pi}{4} (since tan(π4)=1\tan(\frac{\pi}{4})=1) and B=θB = \theta. Thus, the expression simplifies to tan(π4+θ)\tan\left(\frac{\pi}{4} + \theta\right).