Solveeit Logo

Question

Question: \[\frac{1}{x + 1} + \frac{1}{2(x + 1)^{2}} + \frac{1}{3(x + 1)^{3}} + ....\infty =\]...

1x+1+12(x+1)2+13(x+1)3+....=\frac{1}{x + 1} + \frac{1}{2(x + 1)^{2}} + \frac{1}{3(x + 1)^{3}} + ....\infty =

A

loge(1+1x)\log_{e}\left( 1 + \frac{1}{x} \right)

B

loge(11x)\log_{e}\left( 1 - \frac{1}{x} \right)

C

loge(xx+1)\log_{e}\left( \frac{x}{x + 1} \right)

D

None of these

Answer

loge(1+1x)\log_{e}\left( 1 + \frac{1}{x} \right)

Explanation

Solution

Given series is

y=xx22!+x33!x44!+......,y = x - \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - \frac{x^{4}}{4!} + ......,

x=x =

loge(1y)\log_{e}(1 - y).