Solveeit Logo

Question

Question: \(\frac{1}{\sin 10{^\circ}} - \frac{\sqrt{3}}{\cos 10{^\circ}}\)=...

1sin103cos10\frac{1}{\sin 10{^\circ}} - \frac{\sqrt{3}}{\cos 10{^\circ}}=

A

0

B

1

C

2

D

4

Answer

4

Explanation

Solution

1sin103cos10=2(12cos10o32sin10o)22(=cos10o3sin10osin10ocos10osin10ocos10o)\frac{1}{\sin 10{^\circ}} - \frac{\sqrt{3}}{\cos 10{^\circ}} = \frac{2\left( \frac{1}{2}\cos 10^{o} - \frac{\sqrt{3}}{2}\sin 10^{o} \right)}{\frac{2}{2}\left( = \frac{\cos 10^{o} - \sqrt{3}\sin 10^{o}}{\sin 10^{o}\cos 10^{o}}\sin 10^{o}\cos 10^{o} \right)}

=4sin(30o10o)sin20o=4sin20osin20o=4= \frac{4\sin(30^{o} - 10^{o})}{\sin 20^{o}} = \frac{4\sin 20^{o}}{\sin 20^{o}} = 4.