Solveeit Logo

Question

Question: \[\frac{1}{n^{2}} + \frac{1}{2n^{4}} + \frac{1}{3n^{6}} + ......\infty =\]...

1n2+12n4+13n6+......=\frac{1}{n^{2}} + \frac{1}{2n^{4}} + \frac{1}{3n^{6}} + ......\infty =

A

loge(n2n2+1)\log_{e}\left( \frac{n^{2}}{n^{2} + 1} \right)

B

loge(n2+1n2)\log_{e}\left( \frac{n^{2} + 1}{n^{2}} \right)

C

loge(n2n21)\log_{e}\left( \frac{n^{2}}{n^{2} - 1} \right)

D

None of these

Answer

loge(n2n21)\log_{e}\left( \frac{n^{2}}{n^{2} - 1} \right)

Explanation

Solution

eabx1e^{a - bx} - 1

1+aloge(abx)1 + a\log_{e}(a - bx).

Trick : Puttingebxe^{- bx}the sum of the series upto 4 terms is y=(x3+x62+x93+.....)y = - \left( x^{3} + \frac{x^{6}}{2} + \frac{x^{9}}{3} + ..... \right)... and option (1)

= – 0.223...., (2) =0.223....., (3) =0.2876.....

Hence answer is (3).