Solveeit Logo

Question

Question: \(\frac{1}{b}\log(a + b\cos x) + c\)...

1blog(a+bcosx)+c\frac{1}{b}\log(a + b\cos x) + c

A

1x3[logxx]26mudx=\int_{}^{}{\frac{1}{x^{3}}\lbrack\log x^{x}\rbrack^{2}\mspace{6mu} dx =}

B

x33(logx)+x+c\frac{x^{3}}{3}(\log x) + x + c

C

13(logx)3+c\frac{1}{3}(\log x)^{3} + c

D

3log(logx)+c3\log(\log x) + c

Answer

1x3[logxx]26mudx=\int_{}^{}{\frac{1}{x^{3}}\lbrack\log x^{x}\rbrack^{2}\mspace{6mu} dx =}

Explanation

Solution

ax1a2xdx=\int_{}^{}{\frac{a^{x}}{\sqrt{1 - a^{2x}}}dx =}

1logasin1ax+c\frac{1}{\log a}\sin^{- 1}a^{x} + c

sin1ax+c\sin^{- 1}a^{x} + c.