Solveeit Logo

Question

Question: \[\frac{1}{ab}\cot^{- 1}\left( \frac{b\cos x}{a} \right) + c\]...

1abcot1(bcosxa)+c\frac{1}{ab}\cot^{- 1}\left( \frac{b\cos x}{a} \right) + c

A

1abcot1(acosxb)+c\frac{1}{ab}\cot^{- 1}\left( \frac{a\cos x}{b} \right) + c

B

secxlog(secx+tanx)6mudx=\int_{}^{}{\sec x\log(\sec x + \tan x)\mspace{6mu} dx =}

C

[log(secx+tanx)]2+c\lbrack\log(\sec x + \tan x)\rbrack^{2} + c

D

12[log(secx+tanx)]2+c\frac{1}{2}\lbrack\log(\sec x + \tan x)\rbrack^{2} + c

Answer

secxlog(secx+tanx)6mudx=\int_{}^{}{\sec x\log(\sec x + \tan x)\mspace{6mu} dx =}

Explanation

Solution

Put cos2x+x+1x2+sin2x+2x6mudx=\int_{}^{}\frac{\cos 2x + x + 1}{x^{2} + \sin 2x + 2x}\mspace{6mu} ⥂ dx =.