Solveeit Logo

Question

Question: \[\frac{1}{3}\sin^{- 1}x^{3} + c\]...

13sin1x3+c\frac{1}{3}\sin^{- 1}x^{3} + c

A

cosx4sin2x6mudx=\int_{}^{}{\cos x\sqrt{4 - \sin^{2}x}}\mspace{6mu} dx =

B

12sinx4sin2x2sin1(12sinx)+c\frac{1}{2}\sin x\sqrt{4 - \sin^{2}x} - 2\sin^{- 1}\left( \frac{1}{2}\sin x \right) + c

C

12sinx4sin2x+2sin1(12sinx)+c\frac{1}{2}\sin x\sqrt{4 - \sin^{2}x} + 2\sin^{- 1}\left( \frac{1}{2}\sin x \right) + c

D

12sinx4sin2x+sin1(12sinx)+c\frac{1}{2}\sin x\sqrt{4 - \sin^{2}x} + \sin^{- 1}\left( \frac{1}{2}\sin x \right) + c

Answer

cosx4sin2x6mudx=\int_{}^{}{\cos x\sqrt{4 - \sin^{2}x}}\mspace{6mu} dx =

Explanation

Solution

x2+x6(x2)(x1)dx=\int_{}^{}{\frac{x^{2} + x - 6}{(x - 2)(x - 1)}dx =}

Put x+2log(x1)+cx + 2\log(x - 1) + c then it reduces to

2x+2log(x1)+c2x + 2\log(x - 1) + c